Higher-order singular value decomposition: Difference between revisions

Content deleted Content added
No edit summary
 
(26 intermediate revisions by the same user not shown)
Line 1:
{{Short description|Tensor decomposition}}
In [[multilinear algebra]], the '''higher-order singular value decomposition''' ('''HOSVD''') is a misnomer. There does not exist a single tensor decomposition that retains all the defining properties of the matrix SVD. The matrix SVD simultaneously yields a
* ''rank-𝑅'' decomposition and computes
* orthonormal subspaces for the row and column spaces and a diagonal matrix.
These properties are not realized within a single algorithm for higher-order tensors, but are instead realized by two distinct algorithmic developments and represent two distinct research directions. Harshman, as well as, the team of Carol and Chang proposed [[Canonical polyadic decomposition]] (CPD), which is a variant of the [[tensor rank decomposition]], in which a tensor is approximated as a sum of ''K rank-1'' tensors for a user-specified ''K''. [[L. R. Tucker]] proposed a strategy for computing orthonormal subspaces for third order tensors. Aspecsts of these algorithms can be traced as far back as [[F. L. Hitchcock]] in 1928.<ref name=":0">{{Cite journal|last=Hitchcock|first=Frank L|date=1928-04-01|title=Multiple Invariants and Generalized Rank of a M-Way Array or Tensor|journal=Journal of Mathematics and Physics|language=en|volume=7|issue=1–4|pages=39–79|doi=10.1002/sapm19287139|issn=1467-9590}}</ref>
 
 
[[Lieven De Lathauwer |De Lathauwer]] ''et al.''<ref name=":2">{{Cite journal|last1=De Lathauwer|first1=L.|last2=De Moor|first2=B.|last3=Vandewalle|first3=J.|date=2000-01-01|title=On the Best Rank-1 and Rank-(R1 ,R2 ,. . .,RN) Approximation of Higher-Order Tensors|journal=SIAM Journal on Matrix Analysis and Applications|volume=21|issue=4|pages=1324–1342|doi=10.1137/S0895479898346995|issn=0895-4798|citeseerx=10.1.1.102.9135}}</ref><ref name="DeLathauwer00">{{Cite journal|last1=De Lathauwer|first1=L.|last2=De Moor|first2=B.|last3=Vandewalle|first3=J.|date=2000-01-01|title=A Multilinear Singular Value Decomposition|journal=SIAM Journal on Matrix Analysis and Applications|volume=21|issue=4|pages=1253–1278|doi=10.1137/s0895479896305696|issn=0895-4798|citeseerx=10.1.1.102.9135}}</ref> introduced clarity to the Tucker's concepts, while [[Vasilescu]] and [[Demetri Terzopoulos| Terzopoulos]]<ref name=":Vasilescu2002">{{cite conference
|author=M. A. O. Vasilescu, D. Terzopoulos
|title=Multilinear Analysis of Image Ensembles: TensorFaces
Line 9 ⟶ 12:
|___location=Copenhagen, Denmark
|year=2002
|url= https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=67eb22ae0baf86af77188fc0ab27edacf07a9140}}</ref><ref name="Vasilescu2003/><ref name=":Vasilescu2005">{{cite conference
|author=M. A. O. Vasilescu, D. Terzopoulos
|title=Multilinear Subspace Analysis of Image Ensembles
|book-title=Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR’03)
|___location=Madison, WI
|year=2003
}}</ref><ref name=":Vasilescu2005">{{cite conference
|author=M. A. O. Vasilescu, D. Terzopoulos
|title=Multilinear Independent Component Analysis
|book-title=Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR’05)
|___location=San Diego, CA
|year=2005}}</ref> introduced algorithmic clarity. Vasilescu and Terzopoulos<ref name=":Vasilescu2002"/><ref name=":Vasilescu2005"/>
|year=2005}}</ref> introduced algorithmic clarity. Vasilescu and Terzopoulos introduced the '''M-mode SVD''' which is currently referred in the literature as the '''Tucker''' or the '''HOSVD'''. However, the Tucker algorithm, and De Lathauwer ''et al.'''s companion algorithm<ref name=":2"/> are sequential, relying on iterative methods such as gradient descent or the power method, respectively. Vasilescu and Terzopoulos synthesized a set of ideas into an elegant two-step algorithm that can be executed sequentially or in parallel, whose simplicity belies the complexity it resolves. The term '''M-mode SVD''' accurately reflects the algorithm employed without overpromising; it captures the actual computation (a set of SVDs on mode-flattenings) without making assumptions about the structure of the core tensor or implying a rank decomposition.
introduced the '''M-mode SVD''', which is the classic algorithm that is currently referred in the literature as the '''Tucker''' or the '''HOSVD'''. The Tucker approach and De Lathauwer’s implementation are both sequential and rely on iterative procedures such as gradient descent or the power method. By contrast, the M-mode SVD provides a closed-form solution that can be executed sequentially and is well-suited for parallel computation.
 
: This misattribution has had lasting impact on the scholarly record, obscuring the original source of a widely adopted algorithm, and complicating efforts to trace its development, reproduce results, and recognizing the respective contributions of different research efforts.
 
The term '''M-mode SVD''' accurately reflects the algorithm employed. It captures the actual computation, a set of SVDs on mode-flattenings without making assumptions about the structure of the core tensor or implying a rank decomposition.
 
Robust and L1-norm-based variants of this decomposition framework have since been proposed.<ref name="robustHOSVD">{{Cite journal|last1=Godfarb|first1=Donald|last2=Zhiwei|first2=Qin|title=Robust low-rank tensor recovery: Models and algorithms|journal=SIAM Journal on Matrix Analysis and Applications|volume=35|number=1|pages=225–253|date=2014|doi=10.1137/130905010|arxiv=1311.6182|s2cid=1051205}}</ref><ref name="l1tucker">{{cite journal|last1=Chachlakis|first1=Dimitris G.|last2=Prater-Bennette|first2=Ashley|last3=Markopoulos|first3=Panos P.|title=L1-norm Tucker Tensor Decomposition|journal=IEEE Access|date=22 November 2019|volume=7|pages=178454–178465|doi=10.1109/ACCESS.2019.2955134|doi-access=free|arxiv=1904.06455|bibcode=2019IEEEA...7q8454C}}</ref><ref name="l1tucker3">{{cite journal|last1=Markopoulos|first1=Panos P.|last2=Chachlakis|first2=Dimitris G.|last3=Papalexakis|first3=Evangelos|title=The Exact Solution to Rank-1 L1-Norm TUCKER2 Decomposition|journal=IEEE Signal Processing Letters|volume=25|issue=4|date=April 2018|pages=511–515|doi=10.1109/LSP.2018.2790901|arxiv=1710.11306|bibcode=2018ISPL...25..511M|s2cid=3693326}}</ref><ref name="l1tucker2">{{cite book|last1=Markopoulos|first1=Panos P.|last2=Chachlakis|first2=Dimitris G.|last3=Prater-Bennette|first3=Ashley|title=2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP) |chapter=L1-Norm Higher-Order Singular-Value Decomposition |date=21 February 2019|pages=1353–1357|doi=10.1109/GlobalSIP.2018.8646385|isbn=978-1-7281-1295-4|s2cid=67874182}}</ref>
Line 29:
For the purpose of this article, the abstract tensor <math>\mathcal{A}</math> is assumed to be given in coordinates with respect to some basis as a [[Tensor#As multidimensional arrays|M-way array]], also denoted by <math>\mathcal{A}\in\mathbb{C}^{I_1 \times I_2 \cdots \times \cdots I_m \cdots\times I_M}</math>, where ''M'' is the number of modes and the order of the tensor. <math>\mathbb{C}</math> is the complex numbers and it includes both the real numbers <math>\mathbb{R}</math> and the pure imaginary numbers.
 
Let <math>\mathcal{A}_{[m]}\in\mathbb{C}^{I_m \times (I_1 I_2 \cdots I_{m-1} I_{m+1} \cdots I_M)}</math> denote the [[Tensor reshaping#Mode-m Flattening / Mode-m Matrixization|standard mode-''m'' flattening]] of <math>\mathcal{A}</math>, so that the left index of <math>\mathcal{A}_{[m]}</math> corresponds to the <math>m</math>'th index <math>\mathcal{A}</math> and the right index of <math>\mathcal{A}_{[m]}</math> corresponds to all other indices of <math>\mathcal{A
}</math> combined. Let <math>{\bf U}_m \in \mathbb{C}^{I_m \times I_m}</math>be a [[unitary matrix]] containing a basis of the left singular vectors of the <math>\mathcal{A}_{[m]}</math> such that the ''j''th column <math>\mathbf{u}_j</math> of <math>{\bf U}_m</math> corresponds to the ''j''th largest singular value of <math>\mathcal{A}_{[m]}</math>. Observe that the '''mode/factor matrix''' <math>{\bf U}_m</math> does not depend on the particular on the specific definition of the mode ''m'' flattening. By the properties of the [[multilinear multiplication]], we have<math display="block">\begin{array}{rcl}
\mathcal{A}
&=& \mathcal{A}\times ({\bf I}, {\bf I}, \ldots, {\bf I}) \\
&=& \mathcal{A} \times ({\bf U}_1 {\bf U}_1^H, {\bf U}_2 {\bf U}_2^H, \ldots, {\bf U}_M {\bf U}_M^H) \\
&=& \left(\mathcal{A} \times ({\bf U}_1^H, {\bf U}_2^H, \ldots, {\bf U}_M^H) \right) \times ({\bf U}_1, {\bf U}_2, \ldots, {\bf U}_M),
\end{array}</math>where <math>\cdot^H</math> denotes the [[conjugate transpose]]. The second equality is because the <math>{\bf U}_m</math>'s are unitary matrices. Define now the '''core tensor'''<math display="block">\mathcal{S} := \mathcal{A} \times ({\bf U}_1^H, {\bf U}_2^H, \ldots, {\bf U}_M^H).</math>Then, the M-mode SVD(HOSVD)<ref name=":2" /> of <math>\mathcal{A}</math> is the decomposition<math display="block">\mathcal{A} = \mathcal{S}\times ({\bf U}_1, {\bf U}_2, \ldots, {\bf U}_M).</math> The above construction shows that every tensor has a M-mode SVD(HOSVD).
 
== Compact M-mode SVD (HOSVD) ==
As in the case of the [[Singular value decomposition#Compact SVD|compact singular value decomposition]] of a matrix, where the rows and columns corresponding to vanishing singular values are dropped, it is also possible to consider a '''compact HOSVDM-mode SVD'''(HOSVD), which is very useful in applications.
 
Assume that <math>{\bf U}_m \in \mathbb{C}^{I_m \times R_m}</math> is a matrix with unitary columns containing a basis of the left singular vectors corresponding to the nonzero singular values of the standard factor-''m'' flattening <math>\mathcal{A}_{[m]}</math> of <math>\mathcal{A}</math>. Let the columns of <math>{\bf U}_m</math> be sorted such that the <math>r_m</math> th column <math>{\bf u}_{r_m}</math> of <math>{\bf U}_m</math> corresponds to the ''<math>r_m</math>''th largest nonzero singular value of <math>\mathcal{A}_{[m]}</math>. Since the columns of <math>{\bf U}_m</math> form a basis for the image of <math>\mathcal{A}_{[m]}</math>, we have<math display="block">\mathcal{A}_{[m]} = {\bf U}_m {\bf U}_m^H \mathcal{A}_{[m]} = \bigl( \mathcal{A} \times_m ({\bf U}_m {\bf U}_m^H) \bigr)_{[m]},</math>where the first equality is due to the properties of [[Projection (linear algebra)|orthogonal projections]] (in the Hermitian inner product) and the last equality is due to the properties of multilinear multiplication. As flattenings are bijective maps and the above formula is valid for all <math>m=1,2,\ldots,m,\ldots,M</math>, we find as before that<math display="block">\begin{array}{rcl}
Line 49 ⟶ 50:
The '''multilinear rank'''<ref name=":0" /> of <math>\mathcal{A}</math> is denoted with rank-<math>(R_1, R_2, \ldots, R_M) </math>. The multilinear rank is a tuple in <math>\mathbb{N}^M</math> where <math>R_m := \mathrm{rank}( \mathcal{A}_{[m]} )</math>. Not all tuples in <math>\mathbb{N}^M</math> are multilinear ranks.<ref name=":3">{{Cite journal|last1=Carlini|first1=Enrico|last2=Kleppe|first2=Johannes|title=Ranks derived from multilinear maps|journal=Journal of Pure and Applied Algebra|volume=215|issue=8|pages=1999–2004|doi=10.1016/j.jpaa.2010.11.010|year=2011|doi-access=free}}</ref> The multilinear ranks are bounded by <math>1 \le R_m \le I_m</math> and it satisfy the constraint <math display="inline">R_m \le \prod_{i \ne m} R_i</math> must hold.<ref name=":3" />
 
The compact M-mode SVD(HOSVD) is a rank-revealing decomposition in the sense that the dimensions of its core tensor correspond with the components of the multilinear rank of the tensor.
 
== Interpretation ==
The following geometric interpretation is valid for both the full and compact M-mode SVD(HOSVD). Let <math>(R_1, R_2, \ldots, R_M)</math> be the multilinear rank of the tensor <math>\mathcal{A}</math>. Since <math>\mathcal{S} \in {\mathbb C}^{R_1 \times R_2 \times \cdots \times R_M}</math> is a multidimensional array, we can expand it as follows<math display="block">\mathcal{S} = \sum_{r_1=1}^{R_1} \sum_{r_2=1}^{R_2} \cdots \sum_{r_M=1}^{R_M} s_{r_1,r_2,\ldots,r_M} \mathbf{e}_{r_1} \otimes \mathbf{e}_{r_2} \otimes \cdots \otimes \mathbf{e}_{r_M},</math>where <math>\mathbf{e}_{r_m}</math> is the <math>r_m</math>th standard basis vector of <math>{\mathbb C}^{I_m}</math>. By definition of the multilinear multiplication, it holds that<math display="block">\mathcal{A} = \sum_{r_1=1}^{R_1} \sum_{r_2=1}^{R_2} \cdots \sum_{r_M=1}^{R_M} s_{r_1,r_2,\ldots,r_M}
\mathbf{u}_{r_1} \otimes \mathbf{u}_{r_2} \otimes \cdots \otimes \mathbf{u}_{r_M},</math>where the <math>\mathbf{u}_{r_m}</math> are the columns of <math>{\bf U}_m \in {\mathbb C}^{I_m \times R_m}</math>. It is easy to verify that <math>B = \{ \mathbf{u}_{r_1} \otimes \mathbf{u}_{r_2} \otimes \cdots \otimes \mathbf{u}_{r_M} \}_{r_1,r_2,\ldots,r_M}</math> is an orthonormal set of tensors. This means that the M-mode SVD(HOSVD) can be interpreted as a way to express the tensor <math>\mathcal{A}</math> with respect to a specifically chosen orthonormal basis <math>B</math> with the coefficients given as the multidimensional array <math>\mathcal{S}</math>.
 
== Computation ==
Line 59 ⟶ 60:
 
=== Classic computation ===
While De Lathauwer et al. clarified Tucker’s frameworkconcepts through two influential papers, Vasilescu and Terzopoulos synthesizedprovided thealgoritmic ideas into an elegant two-step algorithm—one whose simplicity belies the complexity it resolvesclarity. The Tucker/Kroonenberg algorithm and De Lathauwer ''et al.''<ref name=:2/> algorithmscompanion algorithm are sequential, relying on iterative methods such as gradient descent or the power method. In contrast, the '''M-mode SVD''' is acomputes the othonormal subspaces in closed-form solution that can be computedexecuted sequentially, but it is also well-suited for parallel computation.
 
=== M-mode SVD (also referred to as HOSVD or Tucker)===
What is commonly referred to as the HOSVD or Tucker was developed by [[Vasilescu]] and [[Demetri Terzopoulos|Terzopoulos]] under
the name M-mode SVD.<ref name=":Vasilescu2002"/><ref name=Vasilescu2003/><ref name=":Vasilescu2005"/>
* For <math>m=1,\ldots,M</math>, do the following:
# Construct the mode-''m'' flattening <math>\mathcal{A}_{[m]}</math>;
# Compute the (compact) [[singular value decomposition]] <br/><math>\mathcal{A}_{[m]} = {\bf U}_m {\bf \Sigma}_m {\bf V}^T_m </math>, and store the left singular vectors <math>{\bf U} \in \mathbb{C}^{I_m \times R_m}</math>;
 
* Compute the core tensor <math>\mathcal{S}</math> via the [[mode-k multiplication|mode-m product]] <br/><math> \mathcal{S} = \mathcal{A} \times_1 {\bf U}_1^H \times_2 {\bf U}_2^H \ldots \times_m {\bf U}_m^H \ldots \times_M {\bf U}_M^H</math>
 
=== Interlacing computation ===
A strategy that is significantly faster when some or all <math>R_m \ll I_m </math> consists of interlacing the computation of the core tensor and the factor matrices, as follows:<ref name=Vasilescu2003>{{cite conference
A strategy that is significantly faster when some or all <math>R_m \ll I_m </math> consists of interlacing the computation of the core tensor and the factor matrices, as follows:<ref name=":4">{{Cite journal|last1=Vannieuwenhoven|first1=N.|last2=Vandebril|first2=R.|last3=Meerbergen|first3=K.|date=2012-01-01|title=A New Truncation Strategy for the Higher-Order Singular Value Decomposition|journal=SIAM Journal on Scientific Computing|volume=34|issue=2|pages=A1027–A1052|doi=10.1137/110836067|bibcode=2012SJSC...34A1027V |s2cid=15318433 |issn=1064-8275|url=https://lirias.kuleuven.be/handle/123456789/337210}}</ref><ref name=":5">{{Cite book|title=Tensor Spaces and Numerical Tensor Calculus {{!}} SpringerLink|volume = 42|last=Hackbusch|first=Wolfgang|language=en-gb|doi=10.1007/978-3-642-28027-6|series = Springer Series in Computational Mathematics|year = 2012|isbn = 978-3-642-28026-9| s2cid=117253621 }}</ref><ref name=":fist_hosvd">{{Cite conference|last1=Cobb|first1=Benjamin|last2=Kolla|first2=Hemanth|last3=Phipps|first3=Eric|last4=Çatalyürek|first4=Ümit V.|date=2022|title=FIST-HOSVD: Fused in-Place Sequentially Truncated Higher Order Singular Value Decomposition|conference=Platform for Advanced Scientific Computing(PASC) |language=en|isbn=9781450394109|doi=10.1145/3539781.3539798|doi-access=free}}</ref>
|title=Multilinear Subspace Analysis offor Image Ensembles
|last1=Vasilescu
|first1=M.A.O.
|last2=Terzopoulos
|first2=D.
|book-title=Proc. IEEE Conf. on Computer Vision and Pattern Recognition Conf. (CVPR’03CVPR '03)
|volume=2
|___location=Madison, WI
|year=2003
A strategy that is significantly faster when some or all <math>R_m \ll I_m |pages=93-99}}</mathref> consists of interlacing the computation of the core tensor and the factor matrices, as follows:<ref name=":4">{{Cite journal|last1=Vannieuwenhoven|first1=N.|last2=Vandebril|first2=R.|last3=Meerbergen|first3=K.|date=2012-01-01|title=A New Truncation Strategy for the Higher-Order Singular Value Decomposition|journal=SIAM Journal on Scientific Computing|volume=34|issue=2|pages=A1027–A1052|doi=10.1137/110836067|bibcode=2012SJSC...34A1027V |s2cid=15318433 |issn=1064-8275|url=https://lirias.kuleuven.be/handle/123456789/337210}}</ref><ref name=":5">{{Cite book|title=Tensor Spaces and Numerical Tensor Calculus {{!}} SpringerLink|volume = 42|last=Hackbusch|first=Wolfgang|language=en-gb|doi=10.1007/978-3-642-28027-6|series = Springer Series in Computational Mathematics|year = 2012|isbn = 978-3-642-28026-9| s2cid=117253621 }}</ref><ref name=":fist_hosvd">{{Cite conference|last1=Cobb|first1=Benjamin|last2=Kolla|first2=Hemanth|last3=Phipps|first3=Eric|last4=Çatalyürek|first4=Ümit V.|date=2022|title=FIST-HOSVD: Fused in-Place Sequentially Truncated Higher Order Singular Value Decomposition|conference=Platform for Advanced Scientific Computing(PASC) |language=en|isbn=9781450394109|doi=10.1145/3539781.3539798|doi-access=free}}</ref>
 
* Set <math>\mathcal{A}^0 = \mathcal{A}</math>;
Line 89 ⟶ 100:
A simple idea for trying to solve this optimization problem is to truncate the (compact) SVD in step 2 of either the classic or the interlaced computation. A '''classically''' '''truncated M-mode SVD/HOSVD''' is obtained by replacing step 2 in the classic computation by
* Compute a rank-<math>\bar R_m </math> truncated SVD <math>\mathcal{A}_{[m]} \approx U_m \Sigma_m V^T_m </math>, and store the top <math>\bar R_m </math> left singular vectors <math>U_m \in F^{I_m \times \bar R_m}</math>;
while a '''sequentially truncated M-mode SVD (HOSVD)''' (or '''successively truncated M-mode SVD/(HOSVD)''') is obtained by replacing step 2 in the interlaced computation by
* Compute a rank-<math>\bar R_m </math> truncated SVD <math>\mathcal{A}_{[m]}^{m-1} \approx U_m \Sigma_m V^T_m </math>, and store the top <math>\bar R_m </math> left singular vectors <math>U_m \in F^{I_m \times \bar R_m}</math>. Unfortunately, truncation does not result in an optimal solution for the best low multilinear rank optimization problem,.<ref name=":2" /><ref name=":Vasilescu2002"Vasilescu2003/><ref name=":4" /><ref name=":fist_hosvd" /> However, both the classically and interleaved truncated M-mode SVD/HOSVD result in a '''quasi-optimal''' solution:<ref name=":4" Vasilescu2003/><ref name=":fist_hosvd4" /><ref name=":5" /><ref>{{Cite journal|last=Grasedyck|first=L.|date=2010-01-01|title=Hierarchical Singular Value Decomposition of Tensors|journal=SIAM Journal on Matrix Analysis and Applications|volume=31|issue=4|pages=2029–2054|doi=10.1137/090764189|issn=0895-4798|citeseerx=10.1.1.660.8333}}</ref> if <math>\mathcal{\bar A}_t </math> denotes the classically or sequentially truncated M-mode SVD(HOSVD) and <math>\mathcal{\bar A}^* </math> denotes the optimal solution to the best low multilinear rank approximation problem, then<math display="block">\| \mathcal{A} - \mathcal{\bar A}_t \|_F \le \sqrt{M} \| \mathcal{A} - \mathcal{\bar A}^* \|_F; </math>in practice this means that if there exists an optimal solution with a small error, then a truncated M-mode SVD/HOSVD will for many intended purposes also yield a sufficiently good solution.
 
== Applications ==
Line 103 ⟶ 114:
It is also used in [[tensor product model transformation]]-based controller design.<ref name="Baranyi042">{{cite journal|author=P. Baranyi|date=April 2004|title=TP model transformation as a way to LMI based controller design|journal=IEEE Transactions on Industrial Electronics|volume=51|pages=387&ndash;400|doi=10.1109/tie.2003.822037|number=2|s2cid=7957799}}</ref><ref name="compind2">{{cite journal|author1=P. Baranyi|author2=D. Tikk|author3=Y. Yam|author4=R. J. Patton|year=2003|title=From Differential Equations to PDC Controller Design via Numerical Transformation|journal=Computers in Industry|volume=51|issue=3|pages=281&ndash;297|doi=10.1016/s0166-3615(03)00058-7}}</ref>
 
The concept of M-mode SVD (HOSVD) was carried over to functions by Baranyi and Yam via the [[TP model transformation]].<ref name="Baranyi042" /><ref name="compind2" /> This extension led to the definition of the HOSVDM-basedmode SVD/HOSVD canonical form of tensor product functions and Linear Parameter Varying system models<ref name="canon12">{{cite conference|title=Definition of the HOSVD-based canonical form of polytopic dynamic models|author1=P. Baranyi|author2=L. Szeidl|author3=P. Várlaki|author4=Y. Yam|date=July 3–5, 2006|___location=Budapest, Hungary|pages=660–665|conference=3rd International Conference on Mechatronics (ICM 2006)}}</ref> and to convex hull manipulation based control optimization theory, see [[TP model transformation in control theories]].
 
M-mode SVD (HOSVD) was proposed to be applied to multi-viewway data analysis in an unsupervised manner<ref>{{Cite journal|author1=Y-h. Taguchi|date=August 2017|title=Tensor decomposition-based unsupervised feature extraction applied to matrix products for multi-view data processing|journal=PLOS ONE|volume=12|issue=8|pages=e0183933|doi=10.1371/journal.pone.0183933|pmc=5571984|pmid=28841719|bibcode=2017PLoSO..1283933T|doi-access=free}}</ref> and was successfully applied to in silico drug discovery from gene expression.<ref>{{Cite journal|author1=Y-h. Taguchi|date=October 2017|title=Identification of candidate drugs using tensor-decomposition-based unsupervised feature extraction in integrated analysis of gene expression between diseases and DrugMatrix datasets|journal=Scientific Reports|volume=7|issue=1|pages=13733|doi=10.1038/s41598-017-13003-0|pmc=5653784|pmid=29062063|bibcode=2017NatSR...713733T}}</ref>
 
== Robust L1-norm variant ==
L1-Tucker is the [[Lp space|L1-norm]]-based, [[Robust statistics|robust]] variant of [[Tucker decomposition]].<ref name="l1tucker"/><ref name="l1tucker3"/> L1-HOSVD is the analogous of M-mode SVD(HOSVD) for the solution to L1-Tucker.<ref name="l1tucker"/><ref name="l1tucker2"/>
 
== References ==
<references />
 
{{DEFAULTSORT:M-mode SVDHOSVD}}
[[Category:Multilinear algebra]]
[[Category:Tensors]]