Higher-order singular value decomposition: Difference between revisions

Content deleted Content added
No edit summary
 
(15 intermediate revisions by the same user not shown)
Line 12:
|___location=Copenhagen, Denmark
|year=2002
|url= https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=67eb22ae0baf86af77188fc0ab27edacf07a9140}}</ref><ref name=Vasilescu2003/><ref name=":Vasilescu2005">{{cite conference
|author=M. A. O. Vasilescu, D. Terzopoulos
|title=Multilinear Independent Component Analysis
|book-title=Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR’05)
|___location=San Diego, CA
|year=2005}}</ref> introduced algorithmic clarity. Vasilescu and Terzopoulos<ref name=":Vasilescu2002"/><ref name=":Vasilescu2005"/>
introduced the '''M-mode SVD''', which is the classic algorithm that is currently referred in the literature as the '''Tucker''' or the '''HOSVD'''. However,The the '''Tucker''' algorithm,approach and De LathauwerLathauwer’s ''etimplementation al.''are companionboth algorithm<refsequential name=":2"/> are sequential,and relyingrely on iterative methodsprocedures such as gradient descent or the power method, respectively. VasilescuBy andcontrast, Terzopoulosthe synthesizedM-mode aSVD setprovides ofa ideas into an elegant twoclosed-stepform algorithmsolution that can be executed sequentially orand inis parallel, whose simplicity belies the complexity it resolves. The term '''Mwell-modesuited SVD'''for accurately reflects the algorithm employed without overpromising. It captures the actualparallel computation, a set of SVDs on mode-flattenings without making assumptions about the structure of the core tensor or implying a rank decomposition.
 
: This misattribution has had lasting impact on the scholarly record, obscuring the original source of a widely adopted algorithm, and complicating efforts to trace its development, reproduce results, and recognizing the respective contributions of different research efforts.
 
The term '''M-mode SVD''' accurately reflects the algorithm employed. It captures the actual computation, a set of SVDs on mode-flattenings without making assumptions about the structure of the core tensor or implying a rank decomposition.
 
Robust and L1-norm-based variants of this decomposition framework have since been proposed.<ref name="robustHOSVD">{{Cite journal|last1=Godfarb|first1=Donald|last2=Zhiwei|first2=Qin|title=Robust low-rank tensor recovery: Models and algorithms|journal=SIAM Journal on Matrix Analysis and Applications|volume=35|number=1|pages=225–253|date=2014|doi=10.1137/130905010|arxiv=1311.6182|s2cid=1051205}}</ref><ref name="l1tucker">{{cite journal|last1=Chachlakis|first1=Dimitris G.|last2=Prater-Bennette|first2=Ashley|last3=Markopoulos|first3=Panos P.|title=L1-norm Tucker Tensor Decomposition|journal=IEEE Access|date=22 November 2019|volume=7|pages=178454–178465|doi=10.1109/ACCESS.2019.2955134|doi-access=free|arxiv=1904.06455|bibcode=2019IEEEA...7q8454C}}</ref><ref name="l1tucker3">{{cite journal|last1=Markopoulos|first1=Panos P.|last2=Chachlakis|first2=Dimitris G.|last3=Papalexakis|first3=Evangelos|title=The Exact Solution to Rank-1 L1-Norm TUCKER2 Decomposition|journal=IEEE Signal Processing Letters|volume=25|issue=4|date=April 2018|pages=511–515|doi=10.1109/LSP.2018.2790901|arxiv=1710.11306|bibcode=2018ISPL...25..511M|s2cid=3693326}}</ref><ref name="l1tucker2">{{cite book|last1=Markopoulos|first1=Panos P.|last2=Chachlakis|first2=Dimitris G.|last3=Prater-Bennette|first3=Ashley|title=2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP) |chapter=L1-Norm Higher-Order Singular-Value Decomposition |date=21 February 2019|pages=1353–1357|doi=10.1109/GlobalSIP.2018.8646385|isbn=978-1-7281-1295-4|s2cid=67874182}}</ref>
Line 27 ⟶ 29:
For the purpose of this article, the abstract tensor <math>\mathcal{A}</math> is assumed to be given in coordinates with respect to some basis as a [[Tensor#As multidimensional arrays|M-way array]], also denoted by <math>\mathcal{A}\in\mathbb{C}^{I_1 \times I_2 \cdots \times \cdots I_m \cdots\times I_M}</math>, where ''M'' is the number of modes and the order of the tensor. <math>\mathbb{C}</math> is the complex numbers and it includes both the real numbers <math>\mathbb{R}</math> and the pure imaginary numbers.
 
Let <math>\mathcal{A}_{[m]}\in\mathbb{C}^{I_m \times (I_1 I_2 \cdots I_{m-1} I_{m+1} \cdots I_M)}</math> denote the [[Tensor reshaping#Mode-m Flattening / Mode-m Matrixization|standard mode-''m'' flattening]] of <math>\mathcal{A}</math>, so that the left index of <math>\mathcal{A}_{[m]}</math> corresponds to the <math>m</math>'th index <math>\mathcal{A}</math> and the right index of <math>\mathcal{A}_{[m]}</math> corresponds to all other indices of <math>\mathcal{A
}</math> combined. Let <math>{\bf U}_m \in \mathbb{C}^{I_m \times I_m}</math>be a [[unitary matrix]] containing a basis of the left singular vectors of the <math>\mathcal{A}_{[m]}</math> such that the ''j''th column <math>\mathbf{u}_j</math> of <math>{\bf U}_m</math> corresponds to the ''j''th largest singular value of <math>\mathcal{A}_{[m]}</math>. Observe that the '''mode/factor matrix''' <math>{\bf U}_m</math> does not depend on the particular on the specific definition of the mode ''m'' flattening. By the properties of the [[multilinear multiplication]], we have<math display="block">\begin{array}{rcl}
\mathcal{A}
&=& \mathcal{A}\times ({\bf I}, {\bf I}, \ldots, {\bf I}) \\
Line 57 ⟶ 60:
 
=== Classic computation ===
While De Lathauwer et al. clarified Tucker’s frameworkconcepts through two influential papers, Vasilescu and Terzopoulos synthesizedprovided thealgoritmic ideas into an elegant two-step algorithm—one whose simplicity belies the complexity it resolvesclarity. The Tucker/Kroonenberg algorithm and De Lathauwer ''et al.''<ref name=:2/> companion algorithm are sequential, relying on iterative methods such as gradient descent or the power method. In contrast, the '''M-mode SVD''' is acomputes the othonormal subspaces in closed-form solution that can be computedexecuted sequentially, but it is also well-suited for parallel computation.
 
=== M-mode SVD (also referred to as HOSVD or Tucker)===
Line 69 ⟶ 72:
 
=== Interlacing computation ===
A strategy that is significantly faster when some or all <math>R_m \ll I_m </math> consists of interlacing the computation of the core tensor and the factor matrices, as follows:<ref name=Vasilescu2003>{{cite conference
A strategy that is significantly faster when some or all <math>R_m \ll I_m </math> consists of interlacing the computation of the core tensor and the factor matrices, as follows:<ref name=":4">{{Cite journal|last1=Vannieuwenhoven|first1=N.|last2=Vandebril|first2=R.|last3=Meerbergen|first3=K.|date=2012-01-01|title=A New Truncation Strategy for the Higher-Order Singular Value Decomposition|journal=SIAM Journal on Scientific Computing|volume=34|issue=2|pages=A1027–A1052|doi=10.1137/110836067|bibcode=2012SJSC...34A1027V |s2cid=15318433 |issn=1064-8275|url=https://lirias.kuleuven.be/handle/123456789/337210}}</ref><ref name=":5">{{Cite book|title=Tensor Spaces and Numerical Tensor Calculus {{!}} SpringerLink|volume = 42|last=Hackbusch|first=Wolfgang|language=en-gb|doi=10.1007/978-3-642-28027-6|series = Springer Series in Computational Mathematics|year = 2012|isbn = 978-3-642-28026-9| s2cid=117253621 }}</ref><ref name=":fist_hosvd">{{Cite conference|last1=Cobb|first1=Benjamin|last2=Kolla|first2=Hemanth|last3=Phipps|first3=Eric|last4=Çatalyürek|first4=Ümit V.|date=2022|title=FIST-HOSVD: Fused in-Place Sequentially Truncated Higher Order Singular Value Decomposition|conference=Platform for Advanced Scientific Computing(PASC) |language=en|isbn=9781450394109|doi=10.1145/3539781.3539798|doi-access=free}}</ref>
|title=Multilinear Subspace Analysis for Image Ensembles
|last1=Vasilescu
|first1=M.A.O.
|last2=Terzopoulos
|first2=D.
|book-title=Proc. Computer Vision and Pattern Recognition Conf. (CVPR '03)
|volume=2
|___location=Madison, WI
|year=2003
A strategy that is significantly faster when some or all <math>R_m \ll I_m |pages=93-99}}</mathref> consists of interlacing the computation of the core tensor and the factor matrices, as follows:<ref name=":4">{{Cite journal|last1=Vannieuwenhoven|first1=N.|last2=Vandebril|first2=R.|last3=Meerbergen|first3=K.|date=2012-01-01|title=A New Truncation Strategy for the Higher-Order Singular Value Decomposition|journal=SIAM Journal on Scientific Computing|volume=34|issue=2|pages=A1027–A1052|doi=10.1137/110836067|bibcode=2012SJSC...34A1027V |s2cid=15318433 |issn=1064-8275|url=https://lirias.kuleuven.be/handle/123456789/337210}}</ref><ref name=":5">{{Cite book|title=Tensor Spaces and Numerical Tensor Calculus {{!}} SpringerLink|volume = 42|last=Hackbusch|first=Wolfgang|language=en-gb|doi=10.1007/978-3-642-28027-6|series = Springer Series in Computational Mathematics|year = 2012|isbn = 978-3-642-28026-9| s2cid=117253621 }}</ref><ref name=":fist_hosvd">{{Cite conference|last1=Cobb|first1=Benjamin|last2=Kolla|first2=Hemanth|last3=Phipps|first3=Eric|last4=Çatalyürek|first4=Ümit V.|date=2022|title=FIST-HOSVD: Fused in-Place Sequentially Truncated Higher Order Singular Value Decomposition|conference=Platform for Advanced Scientific Computing(PASC) |language=en|isbn=9781450394109|doi=10.1145/3539781.3539798|doi-access=free}}</ref>
 
* Set <math>\mathcal{A}^0 = \mathcal{A}</math>;
Line 88 ⟶ 101:
* Compute a rank-<math>\bar R_m </math> truncated SVD <math>\mathcal{A}_{[m]} \approx U_m \Sigma_m V^T_m </math>, and store the top <math>\bar R_m </math> left singular vectors <math>U_m \in F^{I_m \times \bar R_m}</math>;
while a '''sequentially truncated M-mode SVD (HOSVD)''' (or '''successively truncated M-mode SVD(HOSVD)''') is obtained by replacing step 2 in the interlaced computation by
* Compute a rank-<math>\bar R_m </math> truncated SVD <math>\mathcal{A}_{[m]}^{m-1} \approx U_m \Sigma_m V^T_m </math>, and store the top <math>\bar R_m </math> left singular vectors <math>U_m \in F^{I_m \times \bar R_m}</math>. Unfortunately, truncation does not result in an optimal solution for the best low multilinear rank optimization problem,.<ref name=":2" /><ref name=":Vasilescu2002"Vasilescu2003/><ref name=":4" /><ref name=":fist_hosvd" /> However, both the classically and interleaved truncated M-mode SVD/HOSVD result in a '''quasi-optimal''' solution:<ref name=":4" Vasilescu2003/><ref name=":fist_hosvd4" /><ref name=":5" /><ref>{{Cite journal|last=Grasedyck|first=L.|date=2010-01-01|title=Hierarchical Singular Value Decomposition of Tensors|journal=SIAM Journal on Matrix Analysis and Applications|volume=31|issue=4|pages=2029–2054|doi=10.1137/090764189|issn=0895-4798|citeseerx=10.1.1.660.8333}}</ref> if <math>\mathcal{\bar A}_t </math> denotes the classically or sequentially truncated M-mode SVD(HOSVD) and <math>\mathcal{\bar A}^* </math> denotes the optimal solution to the best low multilinear rank approximation problem, then<math display="block">\| \mathcal{A} - \mathcal{\bar A}_t \|_F \le \sqrt{M} \| \mathcal{A} - \mathcal{\bar A}^* \|_F; </math>in practice this means that if there exists an optimal solution with a small error, then a truncated M-mode SVD/HOSVD will for many intended purposes also yield a sufficiently good solution.
 
== Applications ==
Line 103 ⟶ 116:
The concept of M-mode SVD (HOSVD) was carried over to functions by Baranyi and Yam via the [[TP model transformation]].<ref name="Baranyi042" /><ref name="compind2" /> This extension led to the definition of the M-mode SVD/HOSVD canonical form of tensor product functions and Linear Parameter Varying system models<ref name="canon12">{{cite conference|title=Definition of the HOSVD-based canonical form of polytopic dynamic models|author1=P. Baranyi|author2=L. Szeidl|author3=P. Várlaki|author4=Y. Yam|date=July 3–5, 2006|___location=Budapest, Hungary|pages=660–665|conference=3rd International Conference on Mechatronics (ICM 2006)}}</ref> and to convex hull manipulation based control optimization theory, see [[TP model transformation in control theories]].
 
M-mode SVD (HOSVD) was proposed to be applied to multi-viewway data analysis in an unsupervised manner<ref>{{Cite journal|author1=Y-h. Taguchi|date=August 2017|title=Tensor decomposition-based unsupervised feature extraction applied to matrix products for multi-view data processing|journal=PLOS ONE|volume=12|issue=8|pages=e0183933|doi=10.1371/journal.pone.0183933|pmc=5571984|pmid=28841719|bibcode=2017PLoSO..1283933T|doi-access=free}}</ref> and was successfully applied to in silico drug discovery from gene expression.<ref>{{Cite journal|author1=Y-h. Taguchi|date=October 2017|title=Identification of candidate drugs using tensor-decomposition-based unsupervised feature extraction in integrated analysis of gene expression between diseases and DrugMatrix datasets|journal=Scientific Reports|volume=7|issue=1|pages=13733|doi=10.1038/s41598-017-13003-0|pmc=5653784|pmid=29062063|bibcode=2017NatSR...713733T}}</ref>
 
== Robust L1-norm variant ==
Line 111 ⟶ 124:
<references />
 
{{DEFAULTSORT:M-mode SVDHOSVD}}
[[Category:Multilinear algebra]]
[[Category:Tensors]]