Content deleted Content added
m Added the “Machine learning” template. |
|||
(3 intermediate revisions by 3 users not shown) | |||
Line 4:
{{Machine learning|Paradigms}}
'''Neuromorphic computing''' is an approach to computing that is inspired by the structure and function of the human brain.<ref>{{Cite journal |last1=Ham |first1=Donhee |last2=Park |first2=Hongkun |last3=Hwang |first3=Sungwoo |last4=Kim |first4=Kinam |title=Neuromorphic electronics based on copying and pasting the brain |url=https://www.nature.com/articles/s41928-021-00646-1 |journal=Nature Electronics |year=2021 |language=en |volume=4 |issue=9 |pages=635–644 |doi=10.1038/s41928-021-00646-1 |s2cid=240580331 |issn=2520-1131|url-access=subscription }}</ref><ref>{{Cite journal |last1=van de Burgt |first1=Yoeri |last2=Lubberman |first2=Ewout |last3=Fuller |first3=Elliot J. |last4=Keene |first4=Scott T. |last5=Faria |first5=Grégorio C. |last6=Agarwal |first6=Sapan |last7=Marinella |first7=Matthew J. |last8=Alec Talin |first8=A. |last9=Salleo |first9=Alberto |date=April 2017 |title=A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing |url=https://www.nature.com/articles/nmat4856 |journal=Nature Materials |language=en |volume=16 |issue=4 |pages=414–418 |doi=10.1038/nmat4856 |pmid=28218920 |bibcode=2017NatMa..16..414V |issn=1476-4660}}</ref> A neuromorphic computer/chip is any device that uses physical [[artificial neuron]]s to do computations.<ref>{{cite journal|last1=Mead|first1=Carver|title=Neuromorphic electronic systems|journal=Proceedings of the IEEE|date=1990|volume=78|issue=10|pages=1629–1636|doi=10.1109/5.58356|s2cid=1169506 |url=https://authors.library.caltech.edu/53090/1/00058356.pdf}}</ref><ref name=":2" /> In recent times, the term ''neuromorphic'' has been used to describe [[Analogue electronics|analog]], [[Digital electronics|digital]], [[Mixed-signal integrated circuit|mixed-mode analog/digital VLSI]], and software systems that implement models of [[neural system]]s (for [[perception]], [[motor control]], or [[multisensory integration]]). Recent advances have even discovered ways to
A key aspect of neuromorphic engineering is understanding how the [[Morphology (biology)|morphology]] of individual neurons, circuits, applications, and overall architectures creates desirable computations, affects how [[information]] is represented, influences robustness to damage, incorporates learning and development, adapts to local change (plasticity), and facilitates evolutionary change.
Line 18:
==Implementation==
The implementation of neuromorphic computing on the hardware level can be realized by oxide-based [[memristor]]s,<ref name="Maan 1–13">{{Cite journal|last1=Maan|first1=A. K.|last2=Jayadevi|first2=D. A.|last3=James|first3=A. P.|date=2016-01-01|title=A Survey of Memristive Threshold Logic Circuits|journal=IEEE Transactions on Neural Networks and Learning Systems|volume=PP|issue=99|pages=1734–1746|doi=10.1109/TNNLS.2016.2547842|pmid=27164608|issn=2162-237X|arxiv=1604.07121|bibcode=2016arXiv160407121M|s2cid=1798273}}</ref> [[Spintronics|spintronic]] memories, threshold switches, [[transistor]]s,<ref>{{Cite journal|title = Mott Memory and Neuromorphic Devices|journal = Proceedings of the IEEE|date = 2015-08-01|issn = 0018-9219|pages = 1289–1310|volume = 103|issue = 8|doi = 10.1109/JPROC.2015.2431914|first1 = You|last1 = Zhou|first2 = S.|last2 = Ramanathan|s2cid = 11347598|url=https://zenodo.org/record/895565}}</ref><ref name=":2">{{Cite conference|
==Examples==
Line 95:
* [[Hardware for artificial intelligence]]
* [[Lithionics]]
* [[Neuromorphic Olfaction Systems]]
* [[Neurorobotics]]
* [[Optical flow sensor]]
|