Content deleted Content added
→High redshift galaxies: Significantly updated and improved. |
m →Extended models: fix error introduced in previous edit, where table was moved to the beginning of the section |
||
(3 intermediate revisions by 3 users not shown) | |||
Line 286:
=== ''S''<sub>8</sub> tension ===
The "<math>S_8</math> tension" is a name for another question mark for the ΛCDM model.<ref name="Snowmass21"/> The <math>S_8</math> parameter in the ΛCDM model quantifies the amplitude of matter fluctuations in the late universe and is defined as
<math display="block">S_8 \equiv \sigma_8\sqrt{\Omega_{\rm m}/0.3}</math>Early- (e.g. from [[Cosmic microwave background|CMB]] data) and late-time (e.g. measuring [[weak gravitational lensing]]) measurements facilitate increasingly precise values of <math>S_8</math>. Results from initial weak lensing measurements found a lower value of <math>S_8</math>, compared to the value estimated from Planck<ref>{{Cite journal |last1=Fu |first1=L. |last2=Kilbinger |first2=M. |last3=Erben |first3=T. |last4=Heymans |first4=C. |last5=Hildebrandt |first5=H. |last6=Hoekstra |first6=H. |last7=Kitching |first7=T. D. |last8=Mellier |first8=Y. |last9=Miller |first9=L. |last10=Semboloni |first10=E. |last11=Simon |first11=P. |last12=Van Waerbeke |first12=L. |last13=Coupon |first13=J. |last14=Harnois-Deraps |first14=J. |last15=Hudson |first15=M. J. |date=2014-05-26 |title=CFHTLenS: cosmological constraints from a combination of cosmic shear two-point and three-point correlations |journal=Monthly Notices of the Royal Astronomical Society |language=en |volume=441 |issue=3 |pages=2725–2743 |doi=10.1093/mnras/stu754 |doi-access=free |issn=0035-8711}}</ref><ref>{{Cite journal |last1=Abdalla |first1=Elcio |last2=Abellán |first2=Guillermo Franco |last3=Aboubrahim |first3=Amin |last4=Agnello |first4=Adriano |last5=Akarsu |first5=Özgür |last6=Akrami |first6=Yashar |last7=Alestas |first7=George |last8=Aloni |first8=Daniel |last9=Amendola |first9=Luca |last10=Anchordoqui |first10=Luis A. |last11=Anderson |first11=Richard I. |last12=Arendse |first12=Nikki |last13=Asgari |first13=Marika |last14=Ballardini |first14=Mario |last15=Barger |first15=Vernon |date=June 2022 |title=Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies |url=https://linkinghub.elsevier.com/retrieve/pii/S2214404822000179 |journal=Journal of High Energy Astrophysics |language=en |volume=34 |pages=49–211 |doi=10.1016/j.jheap.2022.04.002 |arxiv=2203.06142 |bibcode=2022JHEAp..34...49A }}</ref>. In recent years much larger surveys have been carried out, some of the preliminarily results also showed evidence of the same tension<ref>{{Cite journal |last1=Heymans |first1=Catherine |last2=Tröster |first2=Tilman |last3=Asgari |first3=Marika |last4=Blake |first4=Chris |last5=Hildebrandt |first5=Hendrik |last6=Joachimi |first6=Benjamin |last7=Kuijken |first7=Konrad |last8=Lin |first8=Chieh-An |last9=Sánchez |first9=Ariel G. |last10=van den Busch |first10=Jan Luca |last11=Wright |first11=Angus H. |last12=Amon |first12=Alexandra |last13=Bilicki |first13=Maciej |last14=de Jong |first14=Jelte |last15=Crocce |first15=Martin |date=February 2021 |title=KiDS-1000 Cosmology: Multi-probe weak gravitational lensing and spectroscopic galaxy clustering constraints |url=https://www.aanda.org/10.1051/0004-6361/202039063 |journal=Astronomy & Astrophysics |volume=646 |pages=A140 |doi=10.1051/0004-6361/202039063 |issn=0004-6361|arxiv=2007.15632 |bibcode=2021A&A...646A.140H }}</ref><ref>{{Cite journal |last1=Abbott |first1=T. M. C. |last2=Aguena |first2=M. |last3=Alarcon |first3=A. |last4=Allam |first4=S. |last5=Alves |first5=O. |last6=Amon |first6=A. |last7=Andrade-Oliveira |first7=F. |last8=Annis |first8=J. |last9=Avila |first9=S. |last10=Bacon |first10=D. |last11=Baxter |first11=E. |last12=Bechtol |first12=K. |last13=Becker |first13=M. R. |last14=Bernstein |first14=G. M. |last15=Bhargava |first15=S. |date=2022-01-13 |title=Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and weak lensing |url=https://link.aps.org/doi/10.1103/PhysRevD.105.023520 |journal=Physical Review D |language=en |volume=105 |issue=2 |page=023520 |doi=10.1103/PhysRevD.105.023520 |issn=2470-0010|arxiv=2105.13549 |bibcode=2022PhRvD.105b3520A |hdl=11368/3013060 }}</ref><ref>{{Cite journal |last1=Li |first1=Xiangchong |last2=Zhang |first2=Tianqing |last3=Sugiyama |first3=Sunao |last4=Dalal |first4=Roohi |last5=Terasawa |first5=Ryo |last6=Rau |first6=Markus M. |last7=Mandelbaum |first7=Rachel |last8=Takada |first8=Masahiro |last9=More |first9=Surhud |last10=Strauss |first10=Michael A. |last11=Miyatake |first11=Hironao |last12=Shirasaki |first12=Masato |last13=Hamana |first13=Takashi |last14=Oguri |first14=Masamune |last15=Luo |first15=Wentao |date=2023-12-11 |title=Hyper Suprime-Cam Year 3 results: Cosmology from cosmic shear two-point correlation functions |url=https://link.aps.org/doi/10.1103/PhysRevD.108.123518 |journal=Physical Review D |language=en |volume=108 |issue=12 |page=123518 |doi=10.1103/PhysRevD.108.123518 |issn=2470-0010|arxiv=2304.00702 |bibcode=2023PhRvD.108l3518L }}</ref>. However, other projects found that with increasing precision there was no significant tension, finding consistency with the Planck results<ref>{{Citation |last1=Wright |first1=Angus H. |title=KiDS-Legacy: Cosmological constraints from cosmic shear with the complete Kilo-Degree Survey |date=2025
=== Axis of evil ===
Line 318:
Dwarf galaxies around the [[Milky Way]] and [[Andromeda Galaxy|Andromeda]] galaxies are observed to be orbiting in thin, planar structures whereas the simulations predict that they should be distributed randomly about their parent galaxies.<ref name=Pawlowski>{{cite journal |first1=Marcel |last1=Pawlowski |display-authors=etal |title=Co-orbiting satellite galaxy structures are still in conflict with the distribution of primordial dwarf galaxies |journal=Monthly Notices of the Royal Astronomical Society |volume=442 |issue=3 |pages=2362–2380 |year=2014 |arxiv=1406.1799|doi=10.1093/mnras/stu1005 |doi-access=free |bibcode=2014MNRAS.442.2362P }}</ref> However, latest research suggests this seemingly bizarre alignment is just a quirk which will dissolve over time.<ref name="Sawala">{{cite journal |first1=Till |last1=Sawala |first2=Marius |last2=Cautun |first3=Carlos |last3=Frenk |display-authors=etal |title=The Milky Way's plane of satellites: consistent with ΛCDM|journal=Nature Astronomy |year=2022 |volume=7 |issue=4 |pages=481–491 |arxiv=2205.02860|doi=10.1038/s41550-022-01856-z |bibcode=2023NatAs...7..481S|s2cid=254920916 }}</ref>
There has been debate on whether early massive galaxies and supermassive black holes are in conflict with LCDM<ref>{{Cite journal |
Using some of the first data from the [[James
=== Missing baryon problem ===
Line 377:
Extended models allow one or more of the "fixed" parameters above to vary, in addition to the basic six; so these models join smoothly to the basic six-parameter model in the limit that the additional parameter(s) approach the default values. For example, possible extensions of the simplest ΛCDM model allow for spatial curvature (<math>\Omega_\text{tot}</math> may be different from 1); or [[quintessence (physics)|quintessence]] rather than a [[cosmological constant]] where the [[Equation of state (cosmology)|equation of state]] of dark energy is allowed to differ from −1. Cosmic inflation predicts tensor fluctuations ([[gravitational wave]]s). Their amplitude is parameterized by the tensor-to-scalar ratio (denoted <math>r</math>), which is determined by the unknown energy scale of inflation. Other modifications allow [[hot dark matter]] in the form of [[neutrino]]s more massive than the minimal value, or a running spectral index; the latter is generally not favoured by simple cosmic inflation models.
Allowing additional variable parameter(s) will generally ''increase'' the uncertainties in the standard six parameters quoted above, and may also shift the central values slightly. The table
Some researchers have suggested that there is a running spectral index, but no statistically significant study has revealed one. Theoretical expectations suggest that the tensor-to-scalar ratio <math>r</math> should be between 0 and 0.3, and the latest results are within those limits.
|