Content deleted Content added
Aimefournier (talk | contribs) m →Injections can be undone: linear ℝ → ℝ² example |
m Remove extra space |
||
Line 3:
{{Functions}}
In [[mathematics]], an '''injective function''' (also known as '''injection''', or '''one-to-one function'''<ref>Sometimes ''one-one function'', in Indian mathematical education. {{Cite web |title=Chapter 1:Relations and functions |url=https://ncert.nic.in/ncerts/l/lemh101.pdf |via=NCERT |url-status=live |archive-url=https://web.archive.org/web/20231226194119/https://ncert.nic.in/ncerts/l/lemh101.pdf |archive-date= Dec 26, 2023 }}</ref>
A [[homomorphism]] between [[algebraic structure]]s is a function that is compatible with the operations of the structures. For all common algebraic structures, and, in particular for [[vector space]]s, an {{em|injective homomorphism}} is also called a {{em|[[monomorphism]]}}. However, in the more general context of [[category theory]], the definition of a monomorphism differs from that of an injective homomorphism.<ref>{{Cite web|url=https://stacks.math.columbia.edu/tag/00V5|title=Section 7.3 (00V5): Injective and surjective maps of presheaves |website=The Stacks project |access-date=2019-12-07}}</ref> This is thus a theorem that they are equivalent for algebraic structures; see {{slink|Homomorphism|Monomorphism}} for more details.
|