Controllo PID: differenze tra le versioni
Contenuto cancellato Contenuto aggiunto
Etichette: Annullato Modifica visuale |
m Bot: numeri di pagina nei template citazione |
||
(7 versioni intermedie di 6 utenti non mostrate) | |||
Riga 19:
* Non sono stabili, a causa della presenza dell'azione integrale (vedi [[Windup]]);
* Alcune regole di taratura, come quelle di Ziegler-Nichols, reagiscono male in alcune condizioni;
* Sono intrinsecamente monovariabili, quindi non possono
== Azioni di controllo PID ==
Riga 33:
=== Azione integrale (I) ===
L
:<math>u_I(t) = {K_I} \int\limits_{0}^{t} e(\tau)\,\mathrm{d}\tau</math>
Riga 57:
==Regole di Ziegler-Nichols==
Il metodo di Ziegler-Nichols, risalente al 1942, è tra i più usati ed è apprezzato per la sua semplicità, per il fatto di non richiedere un [[modello matematico]] del processo e per le prestazioni che riesce a produrre.
Si tratta di un algoritmo per trovare il cosiddetto "guadagno critico", dal quale si deriveranno gli altri parametri del PID<ref>{{Cita pubblicazione|titolo=Optimum settings for automatic controllers|autore=Ziegler, J.G and Nichols, N. B.|anno=1942|serie=Transactions of the ASME|volume=64|pp=
# Il processo viene fatto controllare da un controllore esclusivamente proporzionale (''K<sub>I</sub>'' e ''K<sub>D</sub>'' vengono impostati a zero);
Riga 92:
== PID in forma digitale ==
La [[funzione di trasferimento]] di un regolatore PID digitale si ottiene partendo da quella di un PID tempo continuo ed applicando la procedura di discretizzazione. È però necessario tenere conto della presenza del mantenitore di ordine zero<ref>{{Cita web|url=http://cse.lab.imtlucca.it/~bemporad/teaching/controllodigitale/pdf/10b-sistemi_dati_campionati.pdf|titolo=IMT Lucca - Controllo Digitale - A. Bemporad}}</ref>. Per esempio nella tecnica empirica di Ziegler Nichols a catena aperta, quando si leggono i valori dei parametri dalla tabella, è necessario aggiungere il ritardo finito del mantenitore di ordine zero. La forma digitale del controllo PID presenta il grande vantaggio di poter essere facilmente implementata sotto forma di algoritmo eseguito da un dispositivo microcontrollore<ref>{{Cita web|url=https://manipolando.it/modulazione-di-larghezza-dimpulso-e-sistemi-di-controllo/|titolo=Modulazione a larghezza d’impulso e controllo della velocità}}</ref> e trova larga applicazione in diversi ambiti.
== Pseudocodice ==
Questa è una semplice implementazione pratica di un controllo PID, attraverso semplificazioni ingegneristiche (dato che normalmente, se la funzione da controllare fosse conosciuta matematicamente, non sarebbe necessario controllarla dinamicamente). Questo [[pseudocodice]] somma tre componenti per capire quanto manovrare l'output, in base all'errore calcolato volta per volta. <br>
La parte proporzionale è direttamente proporzionale all'errore. <br>
La parte integrativa somma nel tempo gli errori volta per volta; questo riporta nel lungo periodo la variabile di uscita sui binari corretti. Purtroppo questo non impedisce un'oscillazione una volta raggiunto il valore desiderato. <br>
Riga 102:
<syntaxhighlight lang="text">
previous_error = 0
integral = 0
start:
Riga 130:
==Voci correlate==
*[[Controlli automatici]]
*[[Controllore (strumento)]]
*[[Sistema dinamico]]
*[[Trasformata di Laplace]]
|