Utente:Vilnius/Sandbox: differenze tra le versioni
Contenuto cancellato Contenuto aggiunto
(6 versioni intermedie di uno stesso utente non sono mostrate) | |||
Riga 7:
Il teorema viene usato nell'ambito dei tentativi di formulare una teoria della [[gravità quantistica]] sotto forma di [[Teoria perturbativa (meccanica quantistica)|teoria quantistica perturbativa]], cioè come approssimazione di una possibile, non ancora nota, teoria esatta della gravità quantistica.<ref>{{Cita web|url=https://www.hri.res.in/~strings/verma.pdf|titolo=Soft Graviton Theorem in Generic Quantum
Theory of Gravity|autore=Mritunjay Verma|editore=Harish-Chandra Research Institute}}</ref>
Nel 2014 [[Andrew Strominger]] e Freddy Cachazo hanno esteso il teorema relativo al gravitone aggiungendo un termine che ne permette l'[[Teoria di gauge|invarianza di gauge]] per rotazioni, garantendo la conservazione globale del [[momento angolare]], invece dell'invarianza di gauge conseguente alla sola conservazione globale del [[Quantità di moto|momento lineare]], come nella versione scoperta da Weinberg. Tale estensione è associata all'effetto [[Effetto memoria gravitazionale|memoria gravitazionale di spin]].<ref>{{Cita libro|nome=Freddy|cognome=Cachazo|nome2=Andrew|cognome2=Strominger|wkautore2=Andrew Strominger|titolo=Evidence for a New Soft Graviton Theorem|url=https://arxiv.org/pdf/1404.4091|data=aprile 2014}}</ref>
== Formulazione ==
Riga 14 ⟶ 16:
<math>{\cal S}' = \sqrt{8\pi G} \frac{\eta p^\mu p^\nu \epsilon_{\mu\nu}}{p \cdot p_G - i \eta \varepsilon}{\cal S} + O(p_G^0)</math> ,<ref name=":0" /><ref name=":1">{{Cita libro|nome=Andrew|cognome=Strominger|titolo=Lectures on the Infrared Structure of Gravity and Gauge Theory|url=https://press.princeton.edu/books/hardcover/9780691179506/lectures-on-the-infrared-structure-of-gravity-and-gauge-theory|accesso=2023-01-18|data=2018-03-06|editore=[[Princeton University Press]]|lingua=en|pp=35-36|ISBN=978-0-691-17950-6}}</ref>
dove <math>p</math> è il momento della particella che interagisce con il gravitone, <math>p_G</math> è il momento del gravitone, <math>\epsilon_{\mu\nu}</math> è la sua polarizzazione e il fattore''
La formula deriva da uno [[Serie di potenze|sviluppo in serie]] e l'ultimo termine con la [[O-grande|O grande]] indica che termini di ordine superiore non sono considerati.
Riga 27 ⟶ 29:
Come sopra, nel caso di più fotoni occorre sommare i corrispondenti termini.
=== Estensione al termine successivo ===
Volendo estendere lo sviluppo della formula al termine successivo [[Andrew Strominger]] e Freddy Cachazo hanno dimostrato che per il gravitone vale la seguente relazione:
<math>{\cal S}' = \sqrt{8\pi G} \frac{\eta p^\mu p^\nu \epsilon_{\mu\nu}}{p \cdot p_G - i \eta \varepsilon}{\cal S}-i\sqrt{8\pi G} \frac{\eta p^\mu ({p_G}_\rho J^{\rho\nu}) \epsilon_{\mu\nu}}{p \cdot p_G - i \eta \varepsilon}{\cal S} + O(p_G^1)</math>,
dove <math>J^{\rho\nu}</math>rappresenta il momento angolare della particella che interagisce con il gravitone.<ref>{{Cita libro|nome=Freddy|cognome=Cachazo|nome2=Andrew|cognome2=Strominger|wkautore2=Andrew Strominger|titolo=Evidence for a New Soft Graviton Theorem|url=https://arxiv.org/pdf/1404.4091|data=aprile 2014|pp=1-3|capitolo=1 .Introduction}}</ref>
[[:en:Francis_E._Low|F.E. Low]] per il fotone
[2] F. E. Low, “Scattering of light of very low frequency by systems of spin 1/2,” Phys. Rev. 96 (1954) 1428–32.
[4] F. E. Low, “Bremsstrahlung of very low-energy quanta in elementary particle collisions,”Phys. Rev. 110 (1958) 974–77.
== Dimostrazione ==
Il teorema si dimostra in base a uno [[Serie di potenze|sviluppo in serie]] del [[propagatore]] del [[Elettrodinamica quantistica#Diagrammi di Feynman|fotone]] o del gravitone aggiunto ad ogni linea esterna all'interazione primaria e
Si consideri il caso di un gravitone uscente da una gamba (linea) esterna (fuori dall'area d'interazione), come in figura, di momento <math>p_G</math>. Il calcolo esatto dell'ampiezza d'interazione richiederebbe la conoscenza della teoria completa, ossia la gravità quantistica, ma alle basse energie si può utilizzare uno sviluppo in [[serie di Laurent]],
Ciò in pratica comporta che i calcoli procedano considerando solo i termini relativi al vertice e al propagatore (in base alla tecnica dei diagrammi di Feynman).
Riga 72 ⟶ 88:
'''propagator.'''
Andrew Strominger - Lectures on the Infrared Structure of Gravity and Gauge Theory, p. 35
Riga 84 ⟶ 98:
Weinberg’s soft graviton theorem<ref name=":0" /> is a universal formula relating any S-matrix element in any quantum theory including gravity to a second S-matrix element which differs only by the addition of a graviton whose four-momentum is taken to zero. Remarkably, the formula is blind to the spin or any other quantum numbers of the asymptotic particles involved in the S-matrix element.
https://dash.harvard.edu/bitstream/handle/1/29374083/1401.7026.pdf;jsessionid=6392FB47A36DFFDF342EC0BC22893C9E?sequence=1
== Note ==
|