Urto anelastico: differenze tra le versioni
Contenuto cancellato Contenuto aggiunto
Funzionalità collegamenti suggeriti: 3 collegamenti inseriti. |
m Bot: numeri di pagina nei template citazione e modifiche minori |
||
(2 versioni intermedie di 2 utenti non mostrate) | |||
Riga 11:
|titolo=High-Energy Inelastic ''e''–''p'' Scattering at 6° and 10°
|rivista=[[Physical Review Letters]]
|volume=23 |numero=16 |pp=
|anno=1969
|bibcode=1969PhRvL..23..930B
Riga 19:
|titolo=Observed Behavior of Highly Inelastic Electron–Proton Scattering
|rivista=[[Physical Review Letters]]
|volume=23 |numero=16 |pp=
|anno=1969
|bibcode=1969PhRvL..23..935B
Riga 37:
==Urto completamente anelastico==
[[
Nel caso che l'urto sia '''completamente anelastico''', i corpi restano a contatto dopo la collisione, viaggiano con la stessa velocità e possono essere considerati come un unico corpo.
Riga 56:
La quantità di moto del primo corpo prima dell'urto è <math>\vec p'_{10}</math> e diviene dopo l'urto <math>\vec p'_{1f}=-e\vec p'_{10}</math>.
La grandezza adimensionale introdotta <math>0\le e \le 1</math> è chiamata '''coefficiente di restituzione''' e vale zero per un urto completamente anelastico, mentre
Dalla definizione data avremo che:
:<math>\vec v'_{1f}=-e\vec v'_{10}\qquad e \qquad \vec v'_{2f}=-e\vec v'_{20}</math>,
Riga 63:
L'energia cinetica dopo l'urto è uguale a
:<math>E'_{kf}=\frac 12m_1{v'^2}_{1f}+\frac 12m_2{v'^2}_{2f}=e^2\left(\frac 12m_1{v'^2}_{10}+\frac 12m_2{v'^2}_{20}\right)=e^2E'_{k0}</math>
L'unica energia che viene dissipata è quella
==Caso unidimensionale==
Riga 71:
:<math>\begin{align}v_{1f}&=v_{1f}^'+v_{c}=-ev_{10}^'+v_{c}=-e(v_{10}-v_{c})+v_{c}=-ev_{10}+(1+e)v_{c}=\\
&=-ev_{10}+(1+e)\frac {m_1v_{10}+m_2v_{20}}{m_1+m_2}=\frac {(m_1-em_2)v_{10}+(1+e)m_2v_{20}}{m_1+m_2}
\end{align}\ </math>
:<math>\begin{align}v_{2f}&=v_{2f}^'+v_{c}=-ev_{20}^'+v_{c}=-e(v_{20}-v_{c})+v_{c}=-ev_{20}+(1+e)v_{c}=\\
&=-ev_{20}+(1+e)\frac {m_1v_{10}+m_2v_{20}}{m_1+m_2}=\frac {(m_2-em_1)v_{20}+(1+e)m_1v_{10}}{m_1+m_2}
|