Utente:Mauro.mezzetto/T2K: differenze tra le versioni

Contenuto cancellato Contenuto aggiunto
Versione quasi finale
commento categorie da ns utente
 
(Una versione intermedia di un altro utente non mostrate)
Riga 56:
 
=== Il rivelatore INGRID ===
Lo scopo principale del rivelatore INGRID è il continuo monitoraggio della direzione e dell'intensità del fascio di neutrini mediante rilevazione diretta delle interazioni dei neutrini. Il rilevatore INGRID è composto da 16 moduli identici disposti a forma di croce, 7 in verticale e 7 in orizzontale, più 2 moduli all'esterno della croce. L'altezza e la larghezza dei bracci sono 10 metri. Un singolo modulo è costituito da strati alternati di ferro e scintillatore plastico. Ulteriori 4 strati di veto <ref group="note">Il Veto isè auna partparte ofdel arivelatore detectordove wherenon nodeve activityessere shouldregistrato bealcun registeredsegnale toper acceptpoter anaccettare eventl'evento. SuchQuesto requirementtipo allowsdi constrainingrichiesta thepermettere numberdi ofridurre backgroundil eventsnumero di eventi di fondo in aun selectedparticolare samplecampione; herein thequesto backgroundcaso fromfondi particlesgenerati producedda outsideparticelle ofche thesono detectorprodotte al di fuori del rivelatore.</ref> dello scintillatore circondano il modulo sui lati per separare le particelle che entrano dall'esterno da quelle prodotte dalle interazioni all'interno del modulo. La massa totale di ferro in un modulo è di 7,1 tonnellate e costituisce il 96% del peso del modulo. Sull'asse del fascio di neutrini, al centro dell'incrocio tra il braccio verticale e quello orizzontale, si trova un modulo aggiuntivo costruito solo da strati di scintillatore plastico (Modulo Protonico) con una massa di 0,55 tonnellate. Il suo scopo è registrare le interazioni quasi-elastiche e confrontare i risultati ottenuti con le simulazioni. <ref name="t2knim">{{Cita pubblicazione|autore=T2K Collaboration|anno=2011|titolo=The T2K Experiment|rivista=Nucl. Instrum. Meth. A|volume=659|pp=106-135|doi=10.1016/j.nima.2011.06.067|bibcode=2011NIMPA.659..106A|arxiv=1106.1238}}</ref>
 
=== Il rivelatore ND280 ===
Riga 96:
=== WAGASCI-BabyMIND ===
[[File:Wagasci_and_ND280_neutrino_flux.png|miniatura| Il flusso di neutrini T2K previsto nel sito dei rivelatori WAGASCI-BabyMIND (linea rossa) e ND280 (linea nera)]]
WAGASCI-BabyMIND è un nuovo rivelatore situato accanto ai rivelatori INGRID e ND280, dedicato agli studi sull'interazioni [[Neutrino|dei neutrini]] . Ha fornito i primi dati sul fascio di neutrini nella sua configurazione completa durante la presa dati invernale 2019/2020. <ref name="babymind">{{Cita pubblicazione|arxiv=1704.08079}}</ref> <ref name="wagasci"></ref>
 
Il rivelatore WAGASCI-BabyMIND è composto da diversi sottorivelatori:
 
* Due nuovi [[Scintillatore|scintillatori]] ad [[acqua]] (WAGASCI, WAter-Grid-SCIntillator-Detector) che fungono da bersagli d'acqua e tracciatori di particelle. La struttura a griglia 3D delle barre scintillatrici crea cavità vuote riempite d'acqua. Grazie a questa struttura è stato ottenuto un elevato rapporto acqua/massa nello scintillatore (80% H <sub>2</sub> O + 20% CH) e l'accettanza del rivelatore è elevata e pressoché costante in tutte le direzioni. <ref name="babymind">{{Cita pubblicazione|arxiv=1704.08079}}</ref> <ref name="wagasci"></ref>
 
* Un modulo per la rivelazione dei protoni, lo stesso del rilevatore INGRID, costituito da semplici barre [[Scintillatore|scintillatrici]] [[Materie plastiche|di plastica]] (CH), che funge da bersaglio e tracciatore di particelle. <ref name="babymind">{{Cita pubblicazione|arxiv=1704.08079}}</ref> <ref name="wagasci"></ref>
* Due WallMRD (Wall Muon Range Detector) che sono spettrometri di muoni non magnetizzati per rivelare i muoni che vanno lateralmente. Sono costituiti da piani passivi [[Ferro|di ferro]] intervallati con piani scintillatori attivi. <ref name="babymind" /> <ref name="wagasci" />
* Un BabyMIND ( rilevatore di neutrini di ferro magnetizzato) che è uno spettrometro magnetizzato di muoni per rivelare i muoni in avanti. BabyMIND ha un'originale configurazione di moduli di scintillatore intervallati con moduli di ferrite magnetizzata. I moduli possono essere riorganizzati facilmente per adattare il campo magnetico alle particolari esigenze dell'esperimento. Il campo magnetico viene creato solo all'interno della ferrite, quindi è molto efficiente dal punto di vista energetico rispetto ai magneti che devono magnetizzare gli spazi vuoti attorno a loro come quello di ND280. Tuttavia, il campo magnetico non è omogeneo lungo il volume percorso dai muoni, e ciò pone una sfida ancora aperta per la ricostruzione della quantità di moto delle particelle cariche. <ref name="babymind" />
 
Tutto il materiale attivo nei rivelatori è costituito da scintillatore plastico e viene registrato come spiegato nella sezione Lettura del segnale . <ref name="babymind">{{Cita pubblicazione|arxiv=1704.08079}}</ref> <ref name="wagasci"></ref>
 
L'obiettivo principale del rilevatore WAGASCI-BabyMIND è la riduzione dell'errore sistematico nell'analisi [[Oscillazione del neutrino|dell'oscillazione]], grazie alla sua complementarità rispetto al rilevatore ND280:
 
* Il diverso materiale tra ND280 (80% CH + 20% H<sub>2</sub>O) e SK (H<sub>2</sub>O pura) ci costringe a fare affidamento su modelli di sezione d'urto per individuare la stima in H<sub>2</sub>O rispetto a quella in CH. La frazione d'acqua nei moduli scintillatori d'acqua WAGASCI è pari all'80%, consentendo una misurazione del rapporto della sezione d'urto dei neutrini della corrente carica tra acqua (H <sub>2</sub> O) e plastica (CH) con una precisione del 3%.<ref name="babymind">{{Cita pubblicazione|arxiv=1704.08079}}</ref> <ref name="wagasci"></ref>
* Il nuovo rivelatore fornirà misurazioni di vari canali di interazione dei neutrini con corrente carica con elevata precisione, soglia di momento piu bassa e grande accettanza angolare. Ciò limiterà le incertezze dei modelli di flusso e di sezione d'urto per le particelle prodotte ad angoli elevati. Queste caratteristiche faciliteranno anche il rilevamento degli adroni a basso momento prodotti sia nelle interazioni di neutrino con stati legati di 2 nucleoni che attraverso reinterazioni all'interno del nucleo bersaglio delle particelle prodotte dal neutrino, e quindi una migliore modellazione di tali interazioni nel rivelatore lontano. <ref name="babymind" /> <ref name="wagasci" />
* La posizione alla stessa distanza di 280 metri dal bersaglio di grafite dei rilevatori ND280 e INGRID, ma con un diverso angolo off-axisdi 1,5 gradi, fa sì che lo spettro energetico del fascio di neutrini abbia un picco ad una diversa energia. [[Combinazione lineare|La combinazione]] delle misure di questi rivelatori fornirà una migliore determinazione delle sezioni d'urto dei neutrini in funzione della loro energia. <ref name="babymind" /> <ref name="wagasci" />
Riga 136:
Nel dicembre 2023, la potenza del fascio di protoni ha raggiunto 760&nbsp;kW con 2,0x10<sup>14</sup> protoni per impulso e con 1,32 secondi tra gli impulsi (il cosiddetto ciclo di ripetizione). Per arrivare a 1,3 MW il ciclo di ripetizione dovrà essere ulteriormente ridotto a 1,16 s e il numero di protoni per impulso dovrà aumentare a 3,2x10<sup>14</sup> . Oltre ad aumentare la potenza del fascio di protoni primari, è stata aumentata da 250 kA a 320 kA la corrente negli horn magnetici, che focalizzano le particelle secondarie ( [[Pione|pioni]], [[Kaone|kaoni]], ecc.) con una [[carica elettrica]] scelta. Ciò aumenterà la quantità di neutrini (neutrini nel fascio di modalità di neutrini e antineutrini nel fascio di modalità di neutrini) del 10% e ridurrà la quantità di neutrini con segno sbagliato (antineutrini nel fascio di modalità di neutrini) di circa il 5&nbsp;-&nbsp;10%. <ref name="beamupgradeprogramme">{{Cita pubblicazione|autore=Friend, M.|anno=2017|titolo=J-PARC accelerator and neutrino beamline upgrade|rivista=J. Phys. Conf. Ser.|volume=888|numero=1|p=012042|lingua=en|doi=10.1088/1742-6596/888/1/012042|ISSN=1742-6588}}</ref>
 
La riduzione del ciclo di ripetizione ha richiesto una serie di aggiornamenti hardware, incluso un importante aggiornamento degli [[Alimentazione elettrica|alimentatori]] dell'anello principale e un aggiornamento minore degli alimentatori del corno di focalizzazione, che sono stati tutti installati durante la lunga chiusura nel 2021. Per aumentare la corrente degli horn è stato necessario utilizzare un ulteriore (terzo) alimentatore. La maggiore potenza del fascio di protoni ha richiesto un miglioramento della capacità di raffreddamento dei componenti secondari della linea di luce come il bersaglio [[Grafite|di grafite]], gli horn magnetici e il beam dump, nonché lo smaltimento di una maggiore quantità di acqua di raffreddamento irradiata. <ref name="beamupgradeprogramme">{{Cita pubblicazione|volume=888|lingua=en|doi=10.1088/1742-6596/888/1/012042|bibcode=2017JPhCS.888a2042F|ISSN=1742-6588}}</ref>
 
==== Upgrade di ND280 ====
Riga 164:
 
==== SK-Gd ====
Il terzo elemento di miglioraramento nell’ambito di T2K–II è l’introduzione di [[gadolinio]] in Super-Kamiokande<ref name=":0skgd">{{Cita pubblicazione|nome=K.|cognome=Abe|coautori=et al.|anno=2022|titolo=First gadolinium loading to Super-Kamiokande|rivista=Nuclear Instruments and Methods in Physics A|volume=1027|pp=166248|lingua=en|doi=10.1016/j.nima.2021.166248}}</ref>, che finora era riempito con acqua ultrapura. SK non è in grado di misurare la [[Carica elettrica|carica]] della particella registrata. Ciò significa che non è possibile distinguere l'interazione tra neutrino e antineutrino sulla base della carica di [[leptone]] prodotto (ad es.{{Particella subatomica|Muon-}} è prodotto da {{Particella subatomica|Muon neutrino}} mentre {{Particella subatomica|Muon+}} da {{Particella subatomica|Muon antineutrino}} ). Nelle interazioni (anti)neutrino-nucleo, a parte la produzione di leptoni carichi, dal [[Nucleone|nucleo]] viene solitamente emesso un [[Nucleo atomico|nucleone]] . A causa della [[Legge di conservazione della carica elettrica|conservazione della carica]], per i neutrini viene emesso un protone e per gli antineutrini un neutrone.<ref>{{Cita pubblicazione|autore=Formaggio, J. A.|autore2=Zeller, G. P.|anno=2012|titolo=From eV to EeV: Neutrino cross sections across energy scales|rivista=Rev. Mod. Phys.|volume=84|pp=1307-1341|doi=10.1103/RevModPhys.84.1307|bibcode=2012RvMP...84.1307F|arxiv=1305.7513}}</ref><sup>: 23</sup>  Per cui la rivelazione di un neutrone in coincidenza con la rivelazione di un leptone è la firma di un evento di antineutrino.
 
L' energia minima di una particella carica per produrre [[Effetto Čerenkov|luce Cherenkov]] in acqua, proporzionale alla massa della particella, è pari a 0,8 MeV per gli elettroni, 160 MeV per i muoni e 1400 MeV per i protoni. <ref>{{Cita pubblicazione|autore=Scholberg, K.|anno=2012|titolo=Supernova neutrino detection in water Cherenkov detectors|rivista=J. Phys. Conf. Ser.|volume=309|p=012028|doi=10.1088/1742-6596/309/1/012028|bibcode=2011JPhCS.309a2028S}}</ref> Pertanto, i protoni rilasciati nelle interazioni dei neutrini spesso scendono al di sotto della soglia di rivelazione e rimangono inosservati. Il neutrone, essendo una particella neutra, non produce luce Cherenkov. Tuttavia, può essere [[Cattura neutronica|assorbito]] da un altro nucleo, che entra in uno [[Eccitazione (meccanica quantistica)|stato eccitato]] e durante la diseccitazione produce [[raggi gamma]] . I fotoni (raggi gamma) ad alta energia (per il gadolinio la loro energia totale è di circa 8 MeV) [[Diffusione Compton|diffondono gli elettroni]] (diffusione Compton) da un atomo e/o [[Produzione di coppia|producono coppie elettrone-positrone]], che poi producono luce Cherenkov. Il gadolinio è un elemento naturale con la più alta sezione d'urto nella cattura di neutroni a energia termica . Per neutroni da 25 meV, la sezione d'urto del gadolinio è circa 10<sup>5</sup> volte maggiore di quella [[Idrogeno|dell'idrogeno]] . La frazione di neutroni che verrà catturata in SK è del 50% per una concentrazione di Gd dello 0,01% e del 90% per una concentrazione dello 0,1%: la concentrazione finale di Gd pianificata in SK. Il segnale derivante dalla cattura dei neutroni è ritardato di una frazione di millisecondo (il tempo in cui il neutrone viaggia nell'acqua prima della cattura più il tempo in cui il gadolinio rimane nello stato eccitato) rispetto al segnale del leptone carico e solitamente appare entro una distanza di 50&nbsp;cm (la distanza percorsa dal neutrone prima della cattura) dal punto di interazione del neutrino. Un tale evento di doppio lampo (il primo lampo del leptone carico, il secondo lampo dei fotoni di diseccitazione di Gd) è la firma di un'interazione di antineutrino. <ref name="skgdnews">{{Cita web|url=http://www-sk.icrr.u-tokyo.ac.jp/sk/news/2020/08/sk-gd-detail-e.html|sito=www-sk.icrr.u-tokyo.ac.jp|dataaccesso=2021-10-07}}</ref> <ref name="skgd">{{Cita pubblicazione|autore=The Super-Kamiokande Collaboration|anno=2022|titolo=First gadolinium loading to Super-Kamiokande|volume=1027|p=166248|doi=10.1016/j.nima.2021.166248|bibcode=2022NIMPA102766248A|arxiv=2109.00360}}</ref>
 
Nel periodo luglio-agosto 2020 un primo carico di 13 tonnellate di Gd<sub>2</sub> (SO<sub>4</sub>)<sub>3</sub> ·8H<sub>2</sub>O  ( gadolinio (III) solfato [[Idrato|ottaidrato]] ) è stato disciolto nell'acqua di SK, equivalente a una concentrazione dello 0,011% di Gd<ref name=":0skgd" />. T2K ha raccolto i suoi primi dati con Gd in SK nel marzo-aprile 2021. L'utilizzo di acqua drogata con gadolinio consentirà anche di studiare i neutrini relici di supernova , permettendo di seprara i {{Particella subatomica|Electron antineutrino}} prodotti dai neutrini provenienti da altre fonti. Migliorerà inoltre le prestazioni del rilevatore per le esplosioni [[Supernova|di supernova]] nella [[Via Lattea|nostra galassia]] e studierà meglio le differenze tra materia e antimateria nelle oscillazioni dei neutrini dell'acceleratore . <ref name="skgdnews">{{Cita web|url=http://www-sk.icrr.u-tokyo.ac.jp/sk/news/2020/08/sk-gd-detail-e.html|sito=www-sk.icrr.u-tokyo.ac.jp|dataaccesso=2021-10-07}}</ref> <ref name="skgd">{{Cita pubblicazione|autore=The Super-Kamiokande Collaboration|anno=2022|volume=1027|doi=10.1016/j.nima.2021.166248|bibcode=2022NIMPA102766248A|arxiv=2109.00360}}</ref> A luglio 2022 si è completato lo scioglimento in acqua di altre 87 tonellate di gadolinio(III) solfato ottaidrato, per una concentrazione totale di gadolinio pari allo 0,02%.
 
=== Esperimento Hyper-Kamiokande ===
Il successore dell'esperimento T2K, l'esperimento [[Hyper-Kamiokande]] (HK), utilizzerà lo stesso fascio prodotto da J-PARC la versione aggiornata di ND280. Oltre a ciò, verrà costruito un nuovo rilevatore lontano, [[Hyper-Kamiokande]], e possibilmente anche un nuovo [[Hyper-Kamiokande|rilevatore intermedio]] (IWCD). Parte dei lavori di upgrade del fascio e l'upgrade del rilevatore ND280 verranno eseguiti prima dell'inizio della fase II dell'esperimento T2K. Si prevede chei Hyper-Kamiokande inizierà la presa dati intorno al 2027.  <ref name="hyperkstart">{{Cita news|url=http://www.j-parc.jp/c/en/topics/2020/02/12000416.html}}</ref> <ref>{{Cita pubblicazione|autore=Hyper-Kamiokande Proto-Collaboration|volume=2015|doi=10.1093/ptep/ptv061|bibcode=2015PTEP.2015e3C02A|arxiv=1502.05199}}</ref>
 
 
== Note ==
<references group="note"/>
 
== Bibliografia ==
{{reflist}}
 
== Collegamenti esterni ==
Riga 180 ⟶ 187:
* [https://www.youtube.com/watch?v=tBrFrdSneZg Fisica dei neutrini – L'esperimento T2K – YouTube]
* [https://www.youtube.com/watch?v=cs02i8TIphs All'interno della grande fisica giapponese | Prima parte: Super Kamiokande – YouTube]
<!--
<nowiki>
[[Categoria:particella elementare]]
[[Categoria:Neutrini]]
[[Categoria:Esperimenti del CERN]]
[[Categoria:Scienza e tecnologia in Giappone]]</nowiki>
-->
<references />