Gravità quantistica a loop: differenze tra le versioni

Contenuto cancellato Contenuto aggiunto
Etichette: Annullato Modifica da mobile Modifica da applicazione mobile Modifica da applicazione Android
Funzionalità collegamenti suggeriti: 3 collegamenti inseriti.
Etichette: Modifica visuale Modifica da mobile Modifica da web per mobile Modifica da mobile avanzata Attività per i nuovi utenti Suggerito: aggiungi collegamenti
 
(6 versioni intermedie di 4 utenti non mostrate)
Riga 1:
La '''gravità quantistica ada anelliloop''' ('''LQG''', dal termine inglese ''loop quantum gravity''), conosciuta anche coi termini di '''gravità ada anelliloop''', '''geometria quantistica''' e '''relatività generale canonica quantistica''', è una [[Fisica teorica|teoria fisica]] di [[gravità quantistica]], ovvero una teoria [[Quanto|quantistica]] dello [[spazio-tempo]] che cerca di unificare la [[meccanica quantistica]] e la [[relatività generale]].
 
== Incompatibilità tra meccanica quantistica e relatività generale ==
Riga 13:
Nel 1986 il fisico [[india]]no [[Abhay Ashtekar]] ha riformulato le equazioni di campo della relatività generale usando ciò che oggi è conosciuto col nome di [[variabili di Ashtekar]], una variante particolare della teoria di Einstein-Cartan con una connessione complessa. Nella formulazione di Ashtekar i campi fondamentali sono una regola per il trasporto parallelo (tecnicamente una connessione) e una struttura di coordinate (detta ''vierbein'') a ogni punto.
 
Dal momento che la formulazione di Ashtekar era indipendente dal background, è stato possibile utilizzare glii anelliloop di Wilson come base per la quantizzazione non perturbativa della gravità. L'invarianza del [[diffeomorfismo]] esplicito (spaziale) dello [[Vuoto (fisica)|stato di vuoto]] gioca un ruolo essenziale nella regolarizzazione degli stati dell'anellodel loop di Wilson.
 
Intorno al 1990 [[Carlo Rovelli]] e [[Lee Smolin]] hanno ottenuto una base esplicita degli stati della geometria quantistica che è stata denominata [[rete di spin]]. In questo contesto le reti di spin si sono presentate come una generalizzazione deglidei anelliloop di Wilson necessarie per trattare glii anelliloop che si intersecano reciprocamente. Dal punto di vista matematico le reti di spin sono correlate alla teoria del gruppo di rappresentazione e possono essere usate per costruire invarianti di nodi come il polinomiale di Jones.
 
Divenendo strettamente correlata alla teoria quantistica topologica dei campi e alla teoria della rappresentazione di gruppo, la LQG è per la maggior parte costruita a un livello rigoroso di fisica matematica.
 
== Princìpi fondamentali ==
La gravità quantistica ada anelliloop fa parte di una famiglia di teorie chiamata ''gravità canonica quantistica'' ed è stata sviluppata in parallelo con la [[quantizzazione ada anelliloop]], una struttura rigorosa della quantizzazione non perturbativa della [[teoria di gauge]] a [[diffeomorfismo]] invariante. In parole più semplici è una teoria quantistica della gravità nella quale lo spazio reale in cui accadono i fenomeni fisici, o [[Evento (fisica)|eventi]], è [[Quantizzazione (fisica)|quantizzato]] (vedi anche più avanti al secondo paragrafo). Secondo questa teoria l'universo è costituito da anelli (in inglese ''loop'') delle dimensioni infinitesime di 10<sup>−35</sup> metri, ossia dieci miliardesimi di miliardesimi di miliardesimi di nanometri. Questi anelli possono contenere una certa quantità di energia che non può mai diventare infinita come in una [[singolarità gravitazionale]], esclusa dalla teoria.
 
Essa conserva gli aspetti fondamentali della relatività generale, come ad esempio l'invarianza per trasformazioni di coordinate, e allo stesso tempo utilizza la quantizzazione dello spazio e del tempo alla [[scala di Planck]], caratteristica della meccanica quantistica; in questo senso combina le due teorie, tuttavia non è una ipotetica [[teoria del tutto]] poiché non dà una descrizione unificata di tutte le [[forze fondamentali]], ma descrive unicamente le proprietà quantistiche dello spaziotempo, e quindi della gravità.
Riga 26:
I critici della LQG fanno spesso riferimento al fatto che non predice l'esistenza di ulteriori dimensioni dello spazio tempo, né la [[supersimmetria]]. La risposta dei suoi autori è che allo stato attuale, nonostante ripetute ricerche sperimentali, non vi è alcuna evidenza di altre dimensioni né di particelle supersimmetriche, che devono essere considerate solo ipotesi speculative.
I maggiori successi della gravità quantistica ada anelliloop sono:
# è una quantizzazione non perturbativa della geometria a 3 dimensioni, con operatori quantizzati di area e di volume;
# include il calcolo dell'[[Entropia (termodinamica)|entropia]] dei [[buchi neri]];
Riga 38:
Il cuore della gravità quantistica a loop è rappresentato da una struttura per la quantizzazione non perturbativa delle teorie di gauge a diffeomorfismo invariante che può essere chiamata quantizzazione a loop. Originalmente sviluppata per quantizzare il vuoto della relatività generale in 3+1 dimensioni, il formalismo matematico aiuta la dimensionalità arbitraria dello spazio-tempo, i [[Fermione|fermioni]] (Baez e Krasnov), un [[gruppo di gauge]] arbitrario (o anche un gruppo quantistico) e la [[supersimmetria]] (Smolin) e porta alla quantizzazione della [[cinematica]] delle corrispondenti teorie di gauge a diffeomorfismo invariante. Rimane ancora molto lavoro da svolgere riguardo alla dinamica, al limite classico ed al principio di corrispondenza, necessari per effettuare esperimenti.
 
La quantizzazione a loop risulta dall'applicazione della quantizzazione C*-algebrica di un'algebra non canonica delle osservabili di gauge invarianti classiche. ''Non canonica'' significa che le osservabili di base quantizzate non sono [[coordinate generalizzate]] né i loro momenti coniugati. Invece vengono usati l'algebra generata dalle osservabili di reti di spin (costruiti da olonomi) e flussi di campi di forza.
 
Le tecniche di quantizzazione a loop sono particolarmente utili nel trattare le teorie topologiche quantistiche di campo dove esse danno corpo a modelli ''state-sum/spin-foam'' come il modello Turaev-Viro della relatività generale a 2+1 dimensioni. Una delle più conosciute teorie è la cosiddetta teoria BF in 3+1 dimensioni perché la relatività generale classica può essere formulata come una teoria BF con costrizione, e si spera che una quantizzazione significativa della gravità possa derivare dalla teoria perturbativa dei modelli BF a schiuma di spin.
Riga 50:
L'invarianza per [[diffeomorfismo|diffeomorfismi]], o ''covarianza generale'', è l'invarianza delle leggi fisiche sotto trasformazioni di coordinate arbitrarie, ed è anche una delle caratteristiche della relatività generale. La LQG conserva questa simmetria richiedendo che gli stati fisici siano invarianti sotto i generatori dei diffeomorfismi. L'interpretazione di queste condizioni è ben conosciuta nei riguardi dei diffeomorfismi spaziali puri; comunque la comprensione dei diffeomorfismi che coinvolgono il tempo (la ''costrizione hamiltoniana'') è più debole perché è in relazione con la dinamica e con il cosiddetto [[problema del tempo]] della relatività generale ed inoltre la struttura di calcolo generalmente accettata per descrivere questa costrizione è ancora da trovare.
 
In termini semplicistici e trascurando per un attimo l'[[Invarianza di gauge|invarianza per trasformazioni di gauge]], l'indipendenza dal background è una proprietà che esprime la corrispondenza biunivoca tra la distribuzione spaziotemporale delle sorgenti del [[campo gravitazionale]] e il campo che esse generano: dato uno dei due si ottiene automaticamente l'altro. Usando termini più corretti: la [[Tensore metrico|metrica]] e il [[Tensore energia momento|tensore energia-impulso]] sono legati dalle [[Equazioni di campo di Einstein|equazioni di campo]], senza che sia necessaria nessuna ipotesi particolare né sulla forma della metrica né su quella di <math>T_{\mu\nu}</math>.&nbsp;
 
Che l'[[invarianza di Lorentz]] sia rotta o no al limite alle basse energie della LQG, la teoria è formalmente indipendente dal background. Le equazioni della LQG non sono incluse oppure presuppongono spazio e tempo (eccetto per la sua topologia che non può essere modificata), ma si ritiene con una certa ragionevolezza che aumentino lo spazio ed il tempo a distanze maggiori comparate alla lunghezza di Planck. Non è stato ancora dimostrato che la descrizione che la LQG dà dello spazio-tempo al livello di [[scala di Planck]] possieda un limite del continuum come descritto dalla relatività generale con eventuali correzioni quantistiche.
Riga 64:
È stato anche osservato che il metodo di quantizzazione è tale che i modi veramente quantizzati portano a una teoria topologica e dunque lontana dalla realtà, ma si tratta di un equivoco. La teoria può essere costruita modificando modelli topologici, ma non è una teoria topologica.
 
La LQG risolve i problemi di divergenza ultravioletta delle [[gravitàGravità semiclassica|teorie semiclassiche]] standard. Non ci sono termini divergenti all'ultravioletto negli operatori di volume e nel vincolo Hamiltoniano. Tuttavia, nella teoria esistono divergenze infrarosse, e non è ancora chiaro come trattarle.
 
Una critica alla teoria, comune tra i fautori della teoria della stringhe, è che la versione della teoria della gravità quantistica a loop basata sulle schiume di spin può violare l'unitarietà. È vero che la teoria viola l'unitarietà, nel senso che non esiste nella teoria un [[Gruppo (matematica)|gruppo]] aad un parametro di trasformazioni unitarie che dà l'evoluzione temporale, né una matrice S unitaria. L'assenza di queste strutture stupisce e lascia sconcertato chi viene dal mondo delle stringhe, perché abituato a pensare alla fisica in termini di spazio tempo piatto. Ma l'assenza di queste strutture è implicata dalla relatività generale, nella quale, in generale, non esiste uno spazio piatto asintotico o una simmetria per traslazione nel tempo. L'unitarietà, nel senso di coerenza dell'interpretazione probabilistica della teoria, è ovviamente rispettata dalla gravità quantistica a loop.
 
== Note ==
Riga 104:
* Alejandro Perez, ''[https://arxiv.org/abs/gr-qc/0301113 Spin Foam Models for Quantum Gravity]'', 14 febbraio 2003
* [[Carlo Rovelli]] e [[Lee Smolin]], ''Loop space representation of quantum general relativity'', Nuclear Physics '''B331''' (1990) 80-152
* {{Cita web|url=http://xxx.lanl.gov/abs/gr-qc/9411005|titolo=Discreteness of area and volume in quantum gravity|autore1=Carlo Rovelli|autore2=Lee Smolin|sito=Cornell University Library|data=2 novembre 1994|lingua=en|accesso=11 dicembre 2021|urlarchivio=https://archive.todayis/20121211235201/http://xxx.lanl.gov/abs/gr-qc/9411005|dataarchivio=11 dicembre 2012}} Nucl. Phys., '''B442''' (1995) 593-622, e-print scaricabile.
* [[Carlo Rovelli]], [http://www.treccani.it/enciclopedia/gravita-quantistica_%28XXI-Secolo%29/ Gravità quantistica], ''Enciclopedia del XXI Secolo'' (2010), [[Istituto dell'Enciclopedia italiana Treccani]]
* Claudio Censori, [http://www.treccani.it/enciclopedia/gravita-quantistica_%28Lessico-del-XXI-Secolo%29/ Gravità quantistica], ''Lessico del XXI Secolo'' (2012), [[Istituto dell'Enciclopedia italiana Treccani]]