Content deleted Content added
mNo edit summary |
→Disadvantages: this is purely original research w/o any references given, presuming for some reason that all languages ought to use this particular anglophone spelling for the prefix, even when that'd cause a completely different pronounciation. And how would languages that don't have 'y' in their alphabet then use it even? hardly a polish-specific challenge... Tag: section blanking |
||
(188 intermediate revisions by more than 100 users not shown) | |||
Line 1:
{{short description|Mathematical notation}}
{{More footnotes|date=August 2019}}
{{Numeral systems}}
'''-yllion''' (pronounced {{IPAc-en|aI|lj|@n}})<ref>{{Cite web|url=http://mrob.com/pub/math/largenum-2.html#yllion|title = Large Numbers (Page 2) at MROB}}</ref> is a proposal from [[Donald Knuth]] for the terminology and symbols of an alternate [[decimal]] superbase{{cfn|date=October 2022}} system. In it, he adapts the familiar English terms for [[large numbers]] to provide a systematic set of [[Names of large numbers|names for much larger numbers]]. In addition to providing an extended range, ''-yllion'' also dodges the [[long and short scales|long and short scale]] ambiguity of -illion.
Knuth's digit grouping is [[Scientific notation|exponential]] instead of linear; each division doubles the number of digits handled, whereas the familiar system only adds
==Details and examples==
{{cleanup lang|date=September 2021}}
{{Wiktionary|-yllion}}
In Knuth's ''-yllion'' proposal:
*1 to 999 still have their usual names.
*1000 to 9999 are divided before the 2nd-last digit and named "''[[Placeholder name|foo]]'' hundred ''bar''." (e.g. 1234 is "twelve hundred thirty-four"; 7623 is "seventy-six hundred twenty-three")
*10<sup>4</sup> to 10<sup>8</sup> − 1 are divided before the 4th-last digit and named "''foo'' [[myriad]] ''bar''". Knuth also introduces at this level a grouping symbol (comma) for the numeral. So 382,1902 is "three hundred eighty-two myriad nineteen hundred two."
*10<sup>8</sup> to 10<sup>16</sup> − 1 are divided before the 8th-last digit and named "''foo'' myllion ''bar''", and a semicolon separates the digits. So 1,0002;0003,0004 is "one myriad two myllion, three myriad four."
*10<sup>16</sup> to 10<sup>32</sup> − 1 are divided before the 16th-last digit and named "''foo'' byllion ''bar''", and a colon separates the digits. So 12:0003,0004;0506,7089 is "twelve byllion, three myriad four myllion, five hundred six myriad seventy hundred eighty-nine."
*etc.
Each new number name is the square of the previous one — therefore, each new name covers twice as many digits. Knuth continues borrowing the traditional names changing "illion" to "yllion" on each one.
Abstractly, then, "one <var>n</var>-yllion" is <math>10^{2^{n+2}}</math>. "One trigintyllion" (<math>10^{2^{32}}</math>) would have 2<sup>32</sup> + 1, or 42;9496,7297, or nearly forty-three myllion (4300 million) digits (by contrast, a conventional "[[trigintillion]]" has merely 94 digits — not even a hundred, let alone a thousand million, and still 7 digits short of a googol). Better yet, "one centyllion" (<math>10^{2^{102}}</math>) would have 2<sup>102</sup> + 1, or 507,0602;4009,1291:7605,9868;1282,1505, or about 1/20 of a tryllion digits, whereas a conventional "[[centillion]]" has only 304 digits.
The corresponding [[Chinese numerals#Large numbers|Chinese "long scale" numerals]] are given, with the [[traditional Chinese|traditional]] form listed before the [[simplified Chinese|simplified form]]. Same numerals are used in the Ancient Greek numeral system, and also the Chinese "short scale" (new number name every power of 10 after 1000 (or 10<sup>3+''n''</sup>)), "myriad scale" (new number name every 10<sup>4''n''</sup>), and "mid scale" (new number name every 10<sup>8''n''</sup>). Today these Chinese numerals are still in use, but are used in their "myriad scale" values, which is also used in [[Japanese numerals#Powers of 10|Japanese]] and in [[Korean numerals#Cardinal numerals|Korean]]. For a more extensive table, see '''[[Numeral_(linguistics)#Myriad,_Octad,_and_-yllion_systems|Myriad system]]'''.
{| class="wikitable"
|-
! Value !! Name !! Notation
!Standard English name (short scale)!! Ancient Greek !! Chinese ("long scale") || Pīnyīn ([[Standard Chinese|Mandarin]]) !! Jyutping ([[Standard Cantonese|Cantonese]]) !! Pe̍h-ōe-jī ([[Hokkien]])
|-
| 10<sup>0</sup>
| align="center" | One
| 1
|One
| εἷς (heîs)
| 一
| yī
| jat<sup>1</sup>
| it/chit
|-
| 10<sup>1</sup>
| align="center" | Ten
| 10
|Ten
| δέκα (déka)
| 十
| shí
| sap<sup>6</sup>
| si̍p/cha̍p
|-
| 10<sup>2</sup>
| align="center" | One hundred
| 100
|One hundred
| ἑκατόν (hekatón)
| 百
| bǎi
| baak<sup>3</sup>
| pah
|-
| 10<sup>3</sup>
| align="center" | Ten hundred
| 1000
|One thousand
| χίλιοι (khī́lioi)
| 千
| qiān
| cin<sup>1</sup>
| chhian
|-
| 10<sup>4</sup>
| align="center" | One myriad
| 1,0000
|Ten thousand
| μύριοι (mýrioi)
| 萬, 万
| wàn
| maan<sup>6</sup>
| bān
|-
| 10<sup>5</sup>
| align="center" | Ten myriad
| 10,0000
|One hundred thousand
| δεκάκις μύριοι (dekákis mýrioi)
| 十萬, 十万
| shíwàn
| sap<sup>6</sup> maan<sup>6</sup>
| si̍p/cha̍p bān
|-
| 10<sup>6</sup>
| align="center" | One hundred myriad
| 100,0000
|One million
| ἑκατοντάκις μύριοι (hekatontákis mýrioi)
| 百萬, 百万
| bǎiwàn
| baak<sup>3</sup> maan<sup>6</sup>
| pah bān
|-
| 10<sup>7</sup>
| align="center" | Ten hundred myriad
| 1000,0000
|Ten million
| χιλιάκις μύριοι (khiliákis mýrioi)
| 千萬, 千万
| qiānwàn
| cin<sup>1</sup> maan<sup>6</sup>
| chhian bān
|-
| 10<sup>8</sup>
| align="center" | One myllion
| 1;0000,0000
|One hundred million
| μυριάκις μύριοι (muriákis mýrioi)
| 億, 亿
| yì
| jik<sup>1</sup>
| ek
|-
|10<sup>9</sup>
| align="center" | Ten myllion
|10;0000,0000
|One billion
| δεκάκις μυριάκις μύριοι (dekákis muriákis mýrioi)
| 十億, 十亿
| shíyì
| sap<sup>6</sup> jik<sup>1</sup>
| si̍p/cha̍p ek
|-
|10<sup>10</sup>
| align="center" | One hundred myllion
|100;0000,0000
| Ten billion
| ἑκατοντάκις μυριάκις μύριοι (hekatontákis muriákis múrioi)
| 百億, 百亿
| bǎiyì
| baak<sup>3</sup> jik<sup>1</sup>
| pah ek
|-
|10<sup>11</sup>
| align="center" | Ten hundred myllion
|1000;0000,0000
| One hundred billion
| χῑλῐάκῐς μυριάκις μύριοι (khīliákis muriákis múrioi)
| 千億, 千亿
| qiānyì
| cin<sup>1</sup> jik<sup>1</sup>
| chhian ek
|-
| 10<sup>12</sup>
| align="center" | One myriad myllion
| 1,0000;0000,0000
|One trillion
| μυριάκις μυριάκις μύριοι (muriákis muriákis mýrioi)
| 萬億, 万亿
| wànyì
| maan<sup>6</sup> jik<sup>1</sup>
| bān ek
|-
| 10<sup>13</sup>
| align="center" | Ten myriad myllion
| 10,0000;0000,0000
| Ten trillion
| δεκάκις μυριάκις μυριάκις μύριοι (dekákis muriákis muriákis mýrioi)
| 十萬億, 十万亿
| shíwànyì
| sap<sup>6</sup> maan<sup>6</sup> jik<sup>1</sup>
| si̍p/cha̍p bān ek
|-
| 10<sup>14</sup>
| align="center" | One hundred myriad myllion
| 100,0000;0000,0000
| One hundred trillion
| ἑκατοντάκις μυριάκις μυριάκις μύριοι (hekatontákis muriákis muriákis mýrioi)
| 百萬億, 百万亿
| bǎiwànyì
| baak<sup>3</sup> maan<sup>6</sup> jik<sup>1</sup>
| pah bān ek
|-
| 10<sup>15</sup>
| align="center" | Ten hundred myriad myllion
| 1000,0000;0000,0000
| One quadrillion
| χιλιάκις μυριάκις μυριάκις μύριοι (khiliákis muriákis muriákis mýrioi)
| 千萬億, 千万亿
| qiānwànyì
| cin<sup>1</sup> maan<sup>6</sup> jik<sup>1</sup>
| chhian bān ek
|-
| 10<sup>16</sup>
| align="center" | One byllion
| 1:0000,0000;0000,0000
|Ten quadrillion
| μυριάκις μυριάκις μυριάκις μύριοι (muriákis muriákis muriákis mýrioi)
| 兆
| zhào
| siu<sup>6</sup>
| tiāu
|-
| 10<sup>24</sup>
| align="center" | One myllion byllion
| 1;0000,0000:0000,0000;0000,0000
|One septillion
| μυριάκις μυριάκις μυριάκις μυριάκις μυριάκις μύριοι (muriákis muriákis muriákis muriákis muriákis mýrioi)
| 億兆, 亿兆
| yìzhào
| jik<sup>1</sup> siu<sup>6</sup>
| ek tiāu
|-
| 10<sup>32</sup>
| align="center" | One tryllion
| 1'0000,0000;0000,0000:0000,0000;0000,0000
|One hundred nonillion
| μυριάκις μυριάκις μυριάκις μυριάκις μυριάκις μυριάκις μυριάκις μύριοι (muriákis muriákis muriákis muriákis muriákis muriákis muriákis mýrioi)
| 京
| jīng
| ging<sup>1</sup>
| kiaⁿ
|-
| 10<sup>64</sup>
| align="center" | One quadryllion
|
|Ten vigintillion
|
| 垓
| gāi
| goi<sup>1</sup>
| kai
|-
| 10<sup>128</sup>
| align="center" | One quintyllion
|
|One hundred unquadragintillion
|
| 秭
| zǐ
| zi<sup>2</sup>
| chi
|-
| 10<sup>256</sup>
| align="center" | One sextyllion
|
|Ten quattuoroctogintillion
|
| 穰
| ráng
| joeng<sup>4</sup>
| liōng
|-
| 10<sup>512</sup>
| align="center" | One septyllion
|
|One hundred novensexagintacentillion
|
| 溝, 沟
| gōu
| kau<sup>1</sup>
| kau
|-
| 10<sup>1024</sup>
| align="center" | One octyllion
|
|Ten quadragintatrecentillion
|
| 澗, 涧
| jiàn
| gaan<sup>3</sup>
| kán
|-
| 10<sup>2048</sup>
| align="center" | One nonyllion
|
|One hundred unoctogintasescentillion
|
| 正
| zhēng
| zing<sup>3</sup>
| chiàⁿ
|-
| 10<sup>4096</sup>
| align="center" | One decyllion
|
|Ten milliquattuorsexagintatrecentillion
|
| 載, 载
| zài
| zoi<sup>3</sup>
| chài
|}
==
In order to construct names of the form <var>n</var>-yllion for large values of ''n'', Knuth appends the prefix "latin-" to the name of ''n'' without spaces and uses that as the prefix for ''n''. For example, the number "latintwohundredyllion" corresponds to ''n'' = 200, and hence to the number <math>10^{2^{202}}</math>.
== Negative powers ==
To refer to small quantities with this system, the suffix ''-th'' is used.
For instance, <math>10^{-4}</math> is a ''myriadth.''
<math>10^{-16777216}</math> is a ''vigintyllionth.''
==See also==
* {{Annotated link|Nicolas Chuquet|space_cat=no}}
* {{Annotated link|Jacques Pelletier du Mans}}
* {{Annotated link|Knuth's up-arrow notation}}
* {{Annotated link|The Sand Reckoner}}
==References==
{{Reflist}}
* Donald E. Knuth. ''Supernatural Numbers'' in [[The Mathematical Gardener]] (edited by [[David A. Klarner]]). Wadsworth, Belmont, CA, 1981. 310—325.
* Robert P. Munafo. ''[http://mrob.com/pub/math/largenum-2.html#yllion The Knuth -yllion Notation]'' ( {{Webarchive|url=https://web.archive.org/web/20120213070143/http://mrob.com/pub/math/largenum-2.html#yllion |date=2012-02-13 }} 2012-02-25), 1996–2012.
{{Donald Knuth navbox}}
{{DEFAULTSORT:Yllion}}
[[Category:Scientific suffixes]]
[[Category:Numerals]]
[[Category:Mathematical notation]]
[[Category:Large integers]]
[[Category:Donald Knuth]]
|