Laser: differenze tra le versioni

Contenuto cancellato Contenuto aggiunto
FrescoBot (discussione | contributi)
m Bot: numeri di pagina nei template citazione
Anni 2020: aggiungo paragrafo sul sistema cinese LY-1
 
(7 versioni intermedie di 5 utenti non mostrate)
Riga 12:
[[File:Charles Townes.jpg|thumb|Charles H. Townes]]
 
Il primo maser venne costruito da [[Charles Hard Townes]], J. P. Gordon, e H. J. Zeiger alla [[Columbia University]] nel 1953. L'apparecchio era simile a un laser, ma concentrava energia elettromagnetica in un campo di frequenza notevolmente inferiore: utilizzava infatti l'emissione stimolata per produrre l'amplificazione delle [[microonde]] invece che di onde [[infrarosso|infrarosse]] o [[luce visibile|visibili]]. Il maser di Townes poteva erogare solo una minima potenza, circa 10&nbsp;nW, ma [[Nikolaj Gennadievič Basov|Nikolay Basov]] e [[Aleksandr Michajlovič Prochorov|Aleksandr Prokhorov]] risolsero il problema teorizzando e sviluppando un "metodo di pompaggio" con più di due livelli di energia.<ref>{{Cita web|url=https://www.photonics.com/LinearChart.aspx?ChartID=2|titolo=History of the Laser {{!}} Photonics.com|accesso=7 febbraio 2019}}</ref><ref>{{cita pubblicazione|url=https://www.nobelprize.org/uploads/2018/06/basov-lecture.pdf |autore=Nikolay Basov|titolo=Lettura per il premio Nobel di Nikolay Basov|anno=1964}}</ref> Charles H. Townes, Nikolay Basov e Aleksandr Prokhorov ricevettero il premio Nobel per la fisica nel 1964, "''per il lavoro fondamentale nel campo dell'elettronica quantistica, che ha portato alla costruzione di oscillatori e amplificatori basati sul principio maser-laser.''"<ref>{{Cita web|url=https://www.nobelprize.org/prizes/physics/1964/summary/|titolo=The Nobel Prize in Physics 1964|sito=NobelPrize.org|lingua=en|accesso=7 febbraio 2019}}</ref>
 
=== L'invenzione e la brevettazione ===
Riga 85:
Le norme attualmente in vigore dividono i laser in 7 classi, introducendo i parametri di:
* Limite emissione accessibile (LEA): livello massimo di emissione accessibile permesso in una particolare classe.
* Massima esposizione permessa (MEP): il livello della radiazione laser a cui, in condizioni ordinarie, possono essere esposte le persone senza subire effetti dannosi. I livelli MEP rappresentano il livello massimo al quale l'occhio o la pelle possono essere esposti senza subire un danno a breve o a lungo termine. Il MEP da cui normalmente si ricava il LEA delle diverse classi di laser è stato ricavato dalle “Linee guida sui limiti di esposizione alla radiazione laser di lunghezza d'onda compresa tra 180 nm e 1 mm.” redatte dalla Commissione Internazionale sulla Protezione dalle [[radiazioni non ionizzanti]] (ICNIRP).<ref>{{cita testo|url=http://www.icnirp.org/cms/upload/publications/ICNIRPLaser180gdl_2013.pdf|titolo=International Commission on Non-Ionizing Radiation Protection - ICNIRP GUIDELINES ON LIMITS OF EXPOSURE TO LASER RADIATION OF WAVELENGTHS BETWEEN 180 nm AND 1,000 mm}}</ref>
* Distanza nominale di rischio ottico (DNRO): distanza dalla apertura di uscita in cui l'intensità o l'energia per unità di superficie (grandezze relative alla irradianza o radianza) è uguale alla massima esposizione permessa per evitare il danno corneale (MEP).<ref>{{cita testo|url=http://prod.sandia.gov/techlib/access-control.cgi/2002/021315.pdf|titolo=Approximation Methods for Estimating the Eye-Safe Viewing Distances, with or without Atmospheric Transmission Factors Considered, for Aided and Unaided Viewing Conditions}}</ref>
 
Riga 146:
 
== Impiego in medicina ==
Successivamente alla sua invenzione nel 1960, il laser è stato usato diffusamente per scopi medici. La funzione e risposta terapeutica dipendono in maniera complessa dalla scelta della lunghezza d'onda, dalla durata di irradiazione e dalla potenza del laser. Combinazioni diverse di questi parametri sono impiegate per trasformare l'energia luminosa in [[energia meccanica]], termica o chimica. Generalmente gli effetti meccanici sono prodotti dall'applicazione di brevi impulsi (dell'ordine dei nanosecondi) e alte energie.
 
In questo modo onde di stress meccanico possono essere prodotte con sufficiente forza per disintegrare [[calcolo urinario|calcoli urinari]]. Gli effetti termici si ottengono in funzione della dell'energia assorbita dai diversi tessuti. Brevi impulsi laser vengono usati per ablare sottili strati di tessuto in chirurgia rifrattiva, utilizzando luce laser che penetra solo alcuni micrometri nel tessuto. La lunghezza d'onda della luce laser può essere scelta in modo tale che la luce sia assorbita selettivamente dal bersaglio. La coagulazione selettiva delle vene varicose in [[chirurgia estetica]] può essere compiuta usando una [[lunghezza d'onda]] assorbita selettivamente dall'[[emoglobina]]. L'impulso è scelto allora sufficientemente breve così da non arrecare danno al tessuto normale circostante, ma anche lungo a sufficienza da permettere la coagulazione sull'intero diametro del vaso. Con la [[criolaserforesi]] si sfrutta la permeazione della barriera cutanea per favorire l'immissione di principi attivi per via cutanea.
 
=== Oftalmologia ===
Riga 170:
 
==== Trattamento delle cicatrici atrofiche, ipertrofiche e cheloidi ====
Il laser può essere utilizzato con funzione ablativa, quasi o non ablativa sulle lesioni cutanee che comportano una produzione irregolare di [[collagene]].
 
I più comuni ablativi sono il laser CO<sub>2</sub> (10600&nbsp;nm) e il laser erbio o Er-YAG (2640&nbsp;nm). In origine è stato utilizzato anche il laser PDL (585&nbsp;nm).<ref>{{cita testo|url=https://www.ncbi.nlm.nih.gov/pubmed/11149609|titolo=Laser treatment of hypertrophic scars, keloids, and striae.}}</ref><ref>{{cita testo|url=https://www.ncbi.nlm.nih.gov/pubmed/22612738|titolo=Management of acne scarring, part I: a comparative review of laser surgical approaches.}}</ref> Non ablativi o quasi ablativi invece le tecnologie a impulsi del laser Nd-YAG (1060&nbsp;nm) e diodico (1450&nbsp;nm). Recentemente è stata introdotta anche la tecnologia del laser frazionale (FRAXEL).<ref>{{cita testo|url=https://www.ncbi.nlm.nih.gov/pubmed/17300597|titolo=Laser scar revision: a review}}</ref><ref>{{cita web|url=https://www.ncbi.nlm.nih.gov/pubmed/21856540|titolo=Laser treatment for improvement and minimization of facial scars |data= |accesso=|}}</ref><ref>{{cita testo|url=https://www.ncbi.nlm.nih.gov/pubmed/24336931|titolo=Laser treatment of traumatic scars with an emphasis on ablative fractional laser resurfacing: consensus report.}}</ref>
Riga 236:
 
Contemporaneamente alla [[United States Navy]], varie industrie come la Northrop, [[Raytheon Company]]<ref>{{Cita web | url = http://www.militaryaerospace.com/articles/2014/08/raytheon-laser-jltv.html | titolo = Raytheon to build UAV-killing lasers for Marines | giornale = Military aerospace | data = 15 agosto 2014}}</ref> e la [[Lockheed Martin]] hanno incominciato nei primi mesi del [[2014]] a produrre cannoni laser, con potenze e prestazioni sempre superiori<ref name="LA4">{{cita web|url=http://www.tomshw.it/news/cannone-laser-da-30-kilowatt-per-scopi-militari-54926|titolo=Cannone laser da 30 kilowatt per scopi militari|data=31 gennaio 2014|accesso=27 febbraio 2016|urlarchivio=https://web.archive.org/web/20160305160600/http://www.tomshw.it/news/cannone-laser-da-30-kilowatt-per-scopi-militari-54926|urlmorto=sì}}</ref><ref>{{Cita web | url = http://defense-update.com/20140813_laser-gbad.html | titolo = US Navy to test powerful, mobile laser weapon against drones | giornale = Defense Update | data = 13 agosto 2014| accesso = 29 marzo 2016}}</ref>. Nel giro di un anno, nel [[marzo]] [[2015]] la Lockheed affermò che ''Athena'', nome dell'arma, era in grado, pur con poco più di 30&nbsp;kW di potenza, di perforare e sciogliere come burro la lastra del cofano di un [[Pick-up (veicolo)|pick-up]] da quasi un [[Miglio (unità di misura)|miglio]] di distanza, ovvero circa 1,6 [[chilometro|km]].<ref>{{cita web|url=http://www.corriere.it/esteri/15_marzo_09/laser-che-taglia-come-burro-furgone-quasi-due-km-distanza-a46ac948-c64b-11e4-80fc-ae05ebe65fb1.shtml|titolo=Il laser che “taglia” come burro il furgone da quasi due km di distanza|data=9 marzo 2015|accesso=27 febbraio 2016}}</ref>
 
=== Anni 2020 ===
Nel 2025 durante la parata militare per l'80 Anniversario del giorno della Vittoria cinese sono stati presentati quattro autocarri dotati di un sistema d'arma laser denominato LY-1 per la difesa antiaerea<ref>{{cita web|url=https://www.twz.com/news-features/chinas-imposing-ly-1-high-power-laser-weapon-unveiled-at-huge-military-parade|titolo=China’s Imposing LY-1 High-Power Laser Weapon Unveiled At Huge Military Parade|sito=The War Zone |data=3 settembre 2025|autore=Joseph Trevithick|accesso=9 settembre 2025}}</ref>. In precedenza un sistema simile aveva fatto la sua comparsa su una nave d'assalto anfibio [[Classe Yuzhao|Tipo 071]]<ref>{{cita web|url=https://www.twz.com/sea/laser-weapon-appears-on-chinese-amphibious-assault-ship|titolo=Laser Weapon Appears On Chinese Amphibious Assault Ship|sito=The War Zone |data=19 agosto 2024|autore=Thomas Newdick|accesso=9 settembre 2025}}</ref>.
 
== Altri utilizzi ==