Panjer recursion: Difference between revisions

Content deleted Content added
mNo edit summary
Open access status updates in citations with OAbot #oabot
 
(48 intermediate revisions by 29 users not shown)
Line 1:
The '''Panjer recursion''' is an [[algorithm]] to compute the [[probability distribution]] approximation of a compound [[random variable]]
: <math>S = \sum_{i=1}^N X_i.\,</math>.
where both <math>N\,</math> and <math>X_i\,</math> are [[random variable]]s and of special types. In more general cases the distribution of ''S'' is a [[compound distribution]]. The recursion for the special cases considered was introduced in a paper <ref>{{cite journal|last=Panjer|first=Harry H.|year=1981|title=Recursive evaluation of a family of compound distributions.| journal=ASTIN Bulletin|volume=12|issue=1|pages=22–26|publisher=[[International Actuarial Association]]|url=http://www.casact.org/library/astin/vol12no1/22.pdf|doi=10.1017/S0515036100006796|s2cid=15372040 }}</ref> by [[Harry Panjer]] ([[Distinguished Emeritus Professor]], [[University of Waterloo]]<ref>[http://www.actuaries.org/COUNCIL/Documents/CV_Panjer.pdf CV], actuaries.org; [https://math.uwaterloo.ca/statistics-and-actuarial-science/about/people/harry-panjer Staff page], math.uwaterloo.ca</ref>). It is heavily used in [[actuarial science]] (see also [[systemic risk]]).
where both <math>N</math> and <math>X_i</math> are [[stochastic]].
It was introduced in a paper of [[Harry Panjer]] <ref> {{cite journal|last=Panjer|first=Harry H.|year=1981|title=Recursive evaluation of a family of compound distributions.| journal=ASTIN Bulletin|volume=12|issue=1|pages=22–26|publisher=[[International Actuarial Association]]|url=http://www.casact.org/library/astin/vol12no1/22.pdf|format=PDF}}</ref>. It is heavily used in [[actuarial science]].
 
== Preliminaries ==
We are interested in the compound random variable <math>S = \sum_{i=1}^N X_i\,</math> where <math>N\,</math> and <math>X_i\,</math> fulfill the following preconditions.
=== Claim number distribution ===
<math>N</math> is the "claim number distribution", i.e. <math>N \in \mathbb{N}_0</math>. <math>N</math> is assumed to be independent of the <math>X_i</math>.
 
=== Claim numbersize distribution ===
Furthermore, <math>N</math> has to be a member of the [[Panjer class]]. The Panjer class consists of all counting random variables which fulfill the following relation:
We assume the <math>X_i\,</math> to be [[i.i.d.]] and independent of <math>N\,</math>. Furthermore the <math>X_i\,</math> have to be distributed on a lattice <math>h \mathbb{N}_0\,</math> with latticewidth <math>h>0\,</math>.
<math>p_k= (a + \frac{b}{k}) \cdot p_{k-1},~~k \ge 1. </math>
for some <math>a</math> and <math>b</math> which fulfill <math>a+b \ge 0</math>.
the value <math>p_0</math> is determined such that <math>\sum_{k=0}^\infty p_k = 1.</math>
 
: <math>f_k = P[X_i = hk].\,</math>
Sundt proved in the paper <ref>{{cite journal|author=B. Sundt and W. S. Jewell|title=Further results on recursive evaluation of compound distributions|journal=ASTIN Bulletin|volume=12|issue=1|year=1981|pages=27–39|publisher=[[International Actuarial Association]]|url=http://www.casact.org/library/astin/vol12no1/27.pdf|format=PDF}} </ref> that only the [[binomial distribution]], the [[Poisson distribution]] and the [[negative binomial distribution]] belong to the Panjer class. They have the parameters and values as described in the following table. <math>W_N(x)</math> denotes the [[probability generating function]].
 
In actuarial practice, <math>X_i\,</math> is obtained by discretisation of the claim density function (upper, lower...).
{| class="prettytable"
! width="60" ! class="hintergrundfarbe6" |Distribution
! width="60" ! class="hintergrundfarbe6" |<math> P[N=k] </math>
! width="60" ! class="hintergrundfarbe6" |<math> a </math>
! width="68" ! class="hintergrundfarbe6" |<math> b </math>
! width="45" ! class="hintergrundfarbe6" |<math> p_0 </math>
! width="35" ! class="hintergrundfarbe6" |<math> W_N(x) </math>
! width="35" ! class="hintergrundfarbe6" |<math> E[N] </math>
! width="35" ! class="hintergrundfarbe6" |<math> Var(N) </math>
|-
|[[Binomial distribution|Binomial]]
|<math>\binom{n}{k} p^k (1-p)^{n-k} </math>
|<math> \frac{p}{p-1} </math>
|<math> \frac{p(n+1)}{1-p} </math>
|<math> (1-p)^n </math>
|<math> (px+(1-p))^{n} </math>
|<math> np </math>
|<math> np(1-p) </math>
|-
|[[Poisson distribution|Poisson]]
|<math> e^{-\lambda}\frac{ \lambda^k}{k!} </math>
|<math> 0 </math>
|<math> \lambda </math>
|<math> e^{- \lambda} </math>
|<math> e^{\lambda(s-1)} </math>
|<math> \lambda </math>
|<math> \lambda </math>
|-
|[[Negative binomial distribution|negative binomial]]
|<math> \frac{\Gamma(r+k)}{k!\,\Gamma(r)}\,p^r\,(1-p)^k </math>
|<math> 1-p </math>
|<math> (1-p)(r-1) </math>
|<math> p^r </math>
|<math> \left( \frac{p}{1 - z(1-p)}\right) ^r </math>
|<math> \frac{r(1-p)}{p} </math>
|<math> \frac{r(1-p)}{p^2} </math>
|-
|}
 
=== Claim sizenumber distribution ===
 
We assume the <math>X_i</math> to be [[i.i.d.]] and independent of <math>N</math>. Furthermore the <math>X_i</math> have to be distributed on a lattice <math>h \mathbb{N}_0</math> with latticewidth <math>h>0</math>.
The number of claims ''N'' is a [[random variable]], which is said to have a "claim number distribution", and which can take values 0, 1, 2, .... etc.. For the "Panjer recursion", the [[probability distribution]] of ''N'' has to be a member of the '''Panjer class''', otherwise known as the [[(a,b,0) class of distributions]]. This class consists of all counting random variables which fulfill the following relation:
:<math>P[N=k] = p_k= \left(a + \frac{b}{k} \right) \cdot p_{k-1},~~k \ge 1.\, </math>
for some <math>a</math> and <math>b</math> which fulfill <math>a+b \ge 0\,</math>. The initial value <math>p_0\,</math> is determined such that <math>\sum_{k=0}^\infty p_k = 1.\,</math>
 
The Panjer recursion makes use of this iterative relationship to specify a recursive way of constructing the probability distribution of ''S''. In the following <math>W_N(x)\,</math> denotes the [[probability generating function]] of ''N'': for this see the table in [[(a,b,0) class of distributions]].
 
In the case of claim number is known, please note the ''De Pril'' algorithm.<ref>Vose Software Risk Wiki: http://www.vosesoftware.com/riskwiki/Aggregatemodeling-DePrilsrecursivemethod.php</ref> This algorithm is suitable to compute the sum distribution of <math>n</math> discrete [[random variables]].<ref>{{Cite journal | doi = 10.1080/03461238.1988.10413837| title = Improved approximations for the aggregate claims distribution of a life insurance portfolio| journal = Scandinavian Actuarial Journal| volume = 1988| issue = 1–3| pages = 61–68| year = 1988| last1 = De Pril | first1 = N. }}</ref>
: <math>f_k = P[X_i = hk].</math>
 
== Recursion ==
The algorithm now gives a recursion to compute the <math>g_k =P[S = hk] \,</math>.
 
The starting value is <math>g_0 = W_N(f_0)\,</math> with the special cases
 
:<math>g_0=p_0\cdot \exp(f_0 b) \quad \text{ if } \quad a = 0,\,</math>
 
and
 
:<math>g_0=\frac{p_0}{(1-f_0a)^{1+b/a}} \quad \text{ for } \quad a \ne 0,\,</math>
 
and proceed with
 
:<math>g_k=\frac{1}{1-f_0a}\sum_{j=1}^k \left( a+\frac{b\cdot j}{k} \right) \cdot f_j \cdot g_{k-j}.\,</math>
 
== Example ==
The following example shows the approximated density of <math>\scriptstyle S \,=\, \sum_{i=1}^N X_i</math> where <math>\scriptstyle N\, \sim\, \text{NegBin}(3.5,0.3)\,</math> and <math>\scriptstyle X \,\sim \,\text{Frechet}(1.7,1)</math> with lattice width ''h'' = 0.04. (See [[Fréchet distribution]].)
 
[[Image:Expba07.jpg]]
 
As observed, an issue may arise at the initialization of the recursion. Guégan and Hassani (2009) have proposed a solution to deal with that issue
.<ref>{{cite journal
|last1 = Guégan |first1 = D.
|last2 = Hassani |first2 = B.K.
|title = A modified Panjer algorithm for operational risk capital calculations
|year = 2009
|journal = Journal of Operational Risk
|volume = 4
|issue = 4
|pages = 53–72
|doi = 10.21314/JOP.2009.068
|s2cid = 4992848
|citeseerx = 10.1.1.413.5632}}</ref>
 
== References ==
<references/>
 
==External links==
*[http://www.vosesoftware.com/riskwiki/Aggregatemodeling-Panjersrecursivemethod.php Panjer recursion and the distributions it can be used with]
 
[[Category:Actuarial science]]
[[Category:ProbabilityCompound theoryprobability distributions]]
[[Category:Theory of probability distributions]]