Content deleted Content added
→Inverse hyperbolic functions: add series for some inverse hyperbolic functions (more to follow) |
Owen Reich (talk | contribs) Link suggestions feature: 2 links added. |
||
Line 1:
{{Short description|Collective name of 6 mathematical functions}}
{{Redirect|Hyperbolic curve|the geometric curve|Hyperbola}}
{{Anchor|Sinh|Cosh|Tanh|Sech|Csch|Coth}}
[[File:sinh cosh tanh.svg|333x333px|thumb]]
In [[mathematics]], '''hyperbolic functions''' are analogues of the ordinary [[trigonometric function]]s, but defined using the [[hyperbola]] rather than the [[circle]]. Just as the points {{math|(cos ''t'', sin ''t'')}} form a [[unit circle|circle with a unit radius]], the points {{math|(cosh ''t'', sinh ''t'')}} form the right half of the [[unit hyperbola]]. Also, similarly to how the derivatives of {{math|sin(''t'')}} and {{math|cos(''t'')}} are {{math|cos(''t'')}} and {{math|–sin(''t'')}} respectively, the derivatives of {{math|sinh(''t'')}} and {{math|cosh(''t'')}} are {{math|cosh(''t'')}} and {{math|sinh(''t'')}} respectively.
Hyperbolic functions are used to express the [[angle of parallelism]] in [[hyperbolic geometry]]. They are used to express [[Lorentz boost]]s as [[hyperbolic rotation]]s in [[special relativity]]. They also occur in the solutions of many linear [[differential equation]]s (such as the equation defining a [[catenary]]), [[Cubic equation#Hyperbolic solution for one real root|cubic equations]], and [[Laplace's equation]] in [[Cartesian coordinates]]. [[Laplace's equation]]s are important in many areas of [[physics]], including [[electromagnetic theory]], [[heat transfer]], and [[fluid dynamics]].
The basic hyperbolic functions are:<ref name=":1">{{Cite web|last=Weisstein|first=Eric W.|authorlink=Eric W. Weisstein|title=Hyperbolic Functions| url=https://mathworld.wolfram.com/HyperbolicFunctions.html|access-date=2020-08-29|website=mathworld.wolfram.com|language=en}}</ref>
* '''hyperbolic sine''' "{{math|sinh}}" ({{IPAc-en|ˈ|s|ɪ|ŋ|,_|ˈ|s|ɪ|n|tʃ|,_|ˈ|ʃ|aɪ|n}}),<ref>(1999) ''Collins Concise Dictionary'', 4th edition, HarperCollins, Glasgow, {{ISBN|0 00 472257 4}}, p. 1386</ref>
* '''hyperbolic cosine''' "{{math|cosh}}" ({{IPAc-en|ˈ|k|ɒ|ʃ|,_|ˈ|k|oʊ|ʃ}}),<ref name="Collins Concise Dictionary p. 328">''Collins Concise Dictionary'', p. 328</ref>
from which are derived:<ref name=":2">{{Cite web|title=Hyperbolic Functions|url=https://www.mathsisfun.com/sets/function-hyperbolic.html|access-date=2020-08-29|website=www.mathsisfun.com}}</ref>
* '''hyperbolic tangent''' "{{math|tanh}}" ({{IPAc-en|ˈ|t|æ|ŋ|,_|ˈ|t|æ|n|tʃ|,_|ˈ|θ|æ|n}}),<ref>''Collins Concise Dictionary'', p. 1520</ref>
* '''hyperbolic cotangent''' "{{math|coth}}" ({{IPAc-en|ˈ|k|ɒ|θ|,_|ˈ|k|oʊ|θ}}),<ref>''Collins Concise Dictionary'', p. 329</ref><ref>[http://www.mathcentre.ac.uk/resources/workbooks/mathcentre/hyperbolicfunctions.pdf tanh]</ref>
* '''hyperbolic secant''' "{{math|sech}}" ({{IPAc-en|ˈ|s|ɛ|tʃ|,_|ˈ|ʃ|ɛ|k}}),<ref>''Collins Concise Dictionary'', p. 1340</ref>
* '''hyperbolic cosecant''' "{{math|csch}}" or "{{math|cosech}}" ({{IPAc-en|ˈ|k|oʊ|s|ɛ|tʃ|,_|ˈ|k|oʊ|ʃ|ɛ|k}}<ref name="Collins Concise Dictionary p. 328"/>)
corresponding to the derived trigonometric functions.
The [[inverse hyperbolic functions]] are:
* '''inverse hyperbolic sine''' "{{math|arsinh}}" (also denoted "{{math|sinh<sup>−1</sup>}}", "{{math|asinh}}" or sometimes "{{math|arcsinh}}")<ref>{{Citation | last=Woodhouse | first = N. M. J. | author-link = N. M. J. Woodhouse | title = Special Relativity | publisher = Springer | place = London | date = 2003 | page = 71 | isbn = 978-1-85233-426-0}}</ref><ref>{{Citation | editor1-last=Abramowitz | editor1-first=Milton | editor1-link=Milton Abramowitz | editor2-last=Stegun | editor2-first=Irene A. | editor2-link=Irene Stegun | title=Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables | publisher=[[Dover Publications]] | ___location=New York | isbn=978-0-486-61272-0 | year=1972| title-link=Abramowitz and Stegun }}</ref><ref>[https://www.google.com/books?q=arcsinh+-library Some examples of using '''arcsinh'''] found in [[Google Books]].</ref>
* '''inverse hyperbolic cosine''' "{{math|arcosh}}" (also denoted "{{math|cosh<sup>−1</sup>}}", "{{math|acosh}}" or sometimes "{{math|arccosh}}")
* '''inverse hyperbolic tangent''' "{{math|artanh}}" (also denoted "{{math|tanh<sup>−1</sup>}}", "{{math|atanh}}" or sometimes "{{math|arctanh}}")
* '''inverse hyperbolic cotangent''' "{{math|arcoth}}" (also denoted "{{math|coth<sup>−1</sup>}}", "{{math|acoth}}" or sometimes "{{math|arccoth}}")
* '''inverse hyperbolic secant''' "{{math|arsech}}" (also denoted "{{math|sech<sup>−1</sup>}}", "{{math|asech}}" or sometimes "{{math|arcsech}}")
* '''inverse hyperbolic cosecant''' "{{math|arcsch}}" (also denoted "{{math|arcosech}}", "{{math|csch<sup>−1</sup>}}", "{{math|cosech<sup>−1</sup>}}","{{math|acsch}}", "{{math|acosech}}", or sometimes "{{math|arccsch}}" or "{{math|arccosech}}")
[[File:Hyperbolic functions-2.svg|thumb|upright=1.4|A [[Ray (geometry)|ray]] through the [[unit hyperbola]] {{math|1=''x''<sup>2</sup> − ''y''<sup>2</sup> = 1}} at the point {{math|(cosh ''a'', sinh ''a'')}}, where {{mvar|a}} is twice the area between the ray, the hyperbola, and the {{mvar|x}}-axis. For points on the hyperbola below the {{mvar|x}}-axis, the area is considered negative (see [[:Image:HyperbolicAnimation.gif|animated version]] with comparison with the trigonometric (circular) functions).]]
The hyperbolic functions take a [[Real number|real]] [[argument of a function|argument]] called a [[hyperbolic angle]]. The magnitude of a hyperbolic angle is the [[area]] of its [[hyperbolic sector]] to ''xy'' = 1. The hyperbolic functions may be defined in terms of the [[hyperbolic sector#Hyperbolic triangle|legs of a right triangle]] covering this sector.
In [[complex analysis]], the hyperbolic functions arise when applying the ordinary sine and cosine functions to an imaginary angle. The hyperbolic sine and the hyperbolic cosine are [[entire function]]s. As a result, the other hyperbolic functions are [[meromorphic function|meromorphic]] in the whole complex plane.
By [[Lindemann–Weierstrass theorem]], the hyperbolic functions have a [[transcendental number|transcendental value]] for every non-zero [[algebraic number|algebraic value]] of the argument.<ref>{{Cite book | jstor=10.4169/j.ctt5hh8zn| title=Irrational Numbers | volume=11| last1=Niven| first1=Ivan| year=1985| publisher=Mathematical Association of America| isbn=9780883850381}}</ref>
==
The first known calculation of a hyperbolic trigonometry problem is attributed to [[Gerardus Mercator]] when issuing the [[Mercator projection|Mercator map projection]] circa 1566. It requires tabulating solutions to a [[transcendental equation]] involving hyperbolic functions.<ref name=":3">{{Cite book |last=George F. Becker |url=https://archive.org/details/hyperbolicfuncti027682mbp/page/n49/mode/2up?q=mercator |title=Hyperbolic Functions |last2=C. E. Van Orstrand |date=1909 |publisher=The Smithsonian Institution |others=Universal Digital Library}}</ref>
The first to suggest a similarity between the sector of the circle and that of the hyperbola was [[Isaac Newton]] in his 1687 [[Philosophiæ Naturalis Principia Mathematica|''Principia Mathematica'']].<ref name=":0">{{Cite book |last=McMahon |first=James |url=https://archive.org/details/hyperbolicfuncti031883mbp/page/n75/mode/2up |title=Hyperbolic Functions |date=1896 |publisher=John Wiley And Sons |others=Osmania University, Digital Library Of India}}</ref>
[[Roger Cotes]] suggested to modify the trigonometric functions using the [[imaginary unit]] <math>i=\sqrt{-1} </math> to obtain an oblate [[spheroid]] from a prolate one.<ref name=":0" />
Hyperbolic functions were formally introduced in 1757 by [[Vincenzo Riccati]].<ref name=":0" /><ref name=":3" /><ref name=":4" /> Riccati used {{math|''Sc.''}} and {{math|''Cc.''}} ({{lang|la|sinus/cosinus circulare}}) to refer to circular functions and {{math|''Sh.''}} and {{math|''Ch.''}} ({{lang|la|sinus/cosinus hyperbolico}}) to refer to hyperbolic functions.<ref name=":0" /> As early as 1759, [[François Daviet de Foncenex|Daviet de Foncenex]] showed the interchangeability of the trigonometric and hyperbolic functions using the imaginary unit and extended [[de Moivre's formula]] to hyperbolic functions.<ref name=":4" /><ref name=":0" />
During the 1760s, [[Johann Heinrich Lambert]] systematized the use functions and provided exponential expressions in various publications.<ref name=":0" /><ref name=":4">Bradley, Robert E.; D'Antonio, Lawrence A.; Sandifer, Charles Edward. ''Euler at 300: an appreciation.'' Mathematical Association of America, 2007. Page 100.</ref> Lambert credited Riccati for the terminology and names of the functions, but altered the abbreviations to those used today.<ref name=":4" /><ref>Becker, Georg F. ''Hyperbolic functions.'' Read Books, 1931. Page xlviii.</ref>
== Notation ==
{{main|Trigonometric functions#Notation}}
==Definitions==
[[File:Cartesian_hyperbolic_rhombus.svg|thumb|right|250px|Right triangles with legs proportional to sinh and cosh]]
With [[hyperbolic angle]] ''u'', the hyperbolic functions sinh and cosh can defined with the [[exponential function]] e<sup>u</sup>.<ref name=":1" /><ref name=":2" /> In the figure
<math>A =(e^{-u}, e^u), \ B=(e^u, \ e^{-u}), \ OA + OB = OC </math> .
=== Exponential definitions ===
[[File:Hyperbolic and exponential; sinh.svg|thumb|right|{{math|sinh ''x''}} is half the [[Subtraction|difference]] of {{math|''e<sup>x</sup>''}} and {{math|''e''<sup>−''x''</sup>}}]]
[[File:Hyperbolic and exponential; cosh.svg|thumb|right|{{math|cosh ''x''}} is the [[Arithmetic mean|average]] of {{math|''e<sup>x</sup>''}} and {{math|''e''<sup>−''x''</sup>}}]]
* Hyperbolic sine: the [[odd part of a function|odd part]] of the exponential function, that is, <math display="block"> \sinh x = \frac {e^x - e^{-x}} {2} = \frac {e^{2x} - 1} {2e^x} = \frac {1 - e^{-2x}} {2e^{-x}}.</math>
* Hyperbolic cosine: the [[even part of a function|even part]] of the exponential function, that is, <math display="block"> \cosh x = \frac {e^x + e^{-x}} {2} = \frac {e^{2x} + 1} {2e^x} = \frac {1 + e^{-2x}} {2e^{-x}}.</math>
[[File:sinh cosh tanh.svg|thumb|<span style="color:#b30000;">sinh</span>, <span style="color:#00b300;">cosh</span> and <span style="color:#0000b3;">tanh</span>]]
[[File:csch sech coth.svg|thumb|<span style="color:#b30000;">csch</span>, <span style="color:#00b300;">sech</span> and <span style="color:#0000b3;">coth</span>]]
* Hyperbolic tangent: <math display="block">\tanh x = \frac{\sinh x}{\cosh x} = \frac {e^x - e^{-x}} {e^x + e^{-x}}
= \frac{e^{2x} - 1} {e^{2x} + 1}.</math>
* Hyperbolic cotangent: for {{math|''x'' ≠ 0}}, <math display="block">\coth x = \frac{\cosh x}{\sinh x} = \frac {e^x + e^{-x}} {e^x - e^{-x}}
= \frac{e^{2x} + 1} {e^{2x} - 1}.</math>
* Hyperbolic secant: <math display="block"> \operatorname{sech} x = \frac{1}{\cosh x} = \frac {2} {e^x + e^{-x}}
= \frac{2e^x} {e^{2x} + 1}.</math>
* Hyperbolic cosecant: for {{math|''x'' ≠ 0}}, <math display="block"> \operatorname{csch} x = \frac{1}{\sinh x} = \frac {2} {e^x - e^{-x}}
= \frac{2e^x} {e^{2x} - 1}.</math>
=== Differential equation definitions ===
The hyperbolic functions may be defined as solutions of [[differential equation]]s: The hyperbolic sine and cosine are the solution {{math|(''s'', ''c'')}} of the system
<math display="block">\begin{align}
c'(x)&=s(x),\\
s'(x)&=c(x),\\
\end{align}
</math>
with the initial conditions <math>s(0) = 0, c(0) = 1.</math> The initial conditions make the solution unique; without them any pair of functions <math>(a e^x + b e^{-x}, a e^x - b e^{-x})</math> would be a solution.
{{math|sinh(''x'')}} and {{math|cosh(''x'')}} are also the unique solution of the equation {{math|1=''f'' ″(''x'') = ''f'' (''x'')}},
such that {{math|1=''f'' (0) = 1}}, {{math|1=''f'' ′(0) = 0}} for the hyperbolic cosine, and {{math|1=''f'' (0) = 0}}, {{math|1=''f'' ′(0) = 1}} for the hyperbolic sine.
=== Complex trigonometric definitions ===
Hyperbolic functions may also be deduced from [[trigonometric function]]s with [[complex number|complex]] arguments:
* Hyperbolic sine:<ref name=":1" /> <math display="block">\sinh x = -i \sin (i x).</math>
* Hyperbolic cosine:<ref name=":1" /> <math display="block">\cosh x = \cos (i x).</math>
* Hyperbolic tangent: <math display="block">\tanh x = -i \tan (i x).</math>
* Hyperbolic cotangent: <math display="block">\coth x = i \cot (i x).</math>
* Hyperbolic secant: <math display="block"> \operatorname{sech} x = \sec (i x).</math>
* Hyperbolic cosecant:<math display="block">\operatorname{csch} x = i \csc (i x).</math>
where {{mvar|i}} is the [[imaginary unit]] with {{math|1=''i''<sup>2</sup> = −1}}.
The above definitions are related to the exponential definitions via [[Euler's formula]] (See {{Section link||Hyperbolic functions for complex numbers}} below).
== Characterizing properties==
=== Hyperbolic cosine ===
It can be shown that the [[area under the curve]] of the hyperbolic cosine (over a finite interval) is always equal to the [[arc length]] corresponding to that interval:<ref>{{cite book | title=Golden Integral Calculus | first1=Bali | last1=N.P. | publisher=Firewall Media | year=2005 | isbn=81-7008-169-6 | page=472 | url=https://books.google.com/books?id=hfi2bn2Ly4cC&pg=PA472}}</ref>
<math display="block">\text{area} = \int_a^b \cosh x \,dx = \int_a^b \sqrt{1 + \left(\frac{d}{dx} \cosh x \right)^2} \,dx = \text{arc length.}</math>
===Hyperbolic tangent{{anchor|tanh}}===
The hyperbolic tangent is the (unique) solution to the [[differential equation]] {{math|1=''f'' ′ = 1 − ''f'' <sup>2</sup>}}, with {{math|1=''f'' (0) = 0}}.<ref>{{cite book |title=Nonlinear Workbook, The: Chaos, Fractals, Cellular Automata, Neural Networks, Genetic Algorithms, Gene Expression Programming, Support Vector Machine, Wavelets, Hidden Markov Models, Fuzzy Logic With C++, Java And Symbolicc++ Programs |first=Willi-Hans |last= Steeb |edition= 3rd|publisher=World Scientific Publishing Company |year=2005 |isbn=978-981-310-648-2 |page=281 |url=https://books.google.com/books?id=-Qo8DQAAQBAJ}} [https://books.google.com/books?id=-Qo8DQAAQBAJ&pg=PA281 Extract of page 281 (using lambda=1)]</ref><ref>{{cite book |title=An Atlas of Functions: with Equator, the Atlas Function Calculator |first1=Keith B.|last1= Oldham |first2=Jan |last2=Myland |first3=Jerome |last3=Spanier |edition=2nd, illustrated |publisher=Springer Science & Business Media |year=2010 |isbn=978-0-387-48807-3 |page=290 |url=https://books.google.com/books?id=UrSnNeJW10YC}} [https://books.google.com/books?id=UrSnNeJW10YC&pg=PA290 Extract of page 290]</ref>
==Useful relations==
{{Anchor|Osborn}}
The hyperbolic functions satisfy many identities, all of them similar in form to the [[trigonometric identity|trigonometric identities]]. In fact, '''Osborn's rule'''<ref name="Osborn, 1902" /> states that one can convert any trigonometric identity (up to but not including sinhs or implied sinhs of 4th degree) for <math>\theta</math>, <math>2\theta</math>, <math>3\theta</math> or <math>\theta</math> and <math>\varphi</math> into a hyperbolic identity, by:
# expanding it completely in terms of integral powers of sines and cosines,
# changing sine to sinh and cosine to cosh, and
# switching the sign of every term containing a product of two sinhs.
Odd and even functions:
<math display="block">\begin{align}
\sinh (-x) &= -\sinh x \\
\cosh (-x) &= \cosh x
\end{align}</math>
Hence:
<math display="block">\begin{align}
\tanh (-x) &= -\tanh x \\
\coth (-x) &= -\coth x \\
\operatorname{sech} (-x) &= \operatorname{sech} x \\
\operatorname{csch} (-x) &= -\operatorname{csch} x
\end{align}</math>
Thus, {{math|cosh ''x''}} and {{math|sech ''x''}} are [[even function]]s; the others are [[odd functions]].
<math display="block">\begin{align}
\operatorname{arsech} x &= \operatorname{arcosh} \left(\frac{1}{x}\right) \\
\operatorname{arcsch} x &= \operatorname{arsinh} \left(\frac{1}{x}\right) \\
\operatorname{arcoth} x &= \operatorname{artanh} \left(\frac{1}{x}\right)
\end{align}</math>
Hyperbolic sine and cosine satisfy:
<math display="block">\begin{align}
\cosh x + \sinh x &= e^x \\
\cosh x - \sinh x &= e^{-x}
\end{align}</math>
which are analogous to [[Euler's formula]], and
<math display="block">
\cosh^2 x - \sinh^2 x = 1
</math>
which is analogous to the [[Pythagorean trigonometric identity]].
One also has
<math display="block">\begin{align}
\operatorname{sech} ^{2} x &= 1 - \tanh^{2} x \\
\operatorname{csch} ^{2} x &= \coth^{2} x - 1
\end{align}</math>
for the other functions.
===Sums of arguments===
<math display="block">\begin{align}
\sinh(x + y) &= \sinh x \cosh y + \cosh x \sinh y \\
\cosh(x + y) &= \cosh x \cosh y + \sinh x \sinh y \\
\tanh(x + y) &= \frac{\tanh x +\tanh y}{1+ \tanh x \tanh y } \\
\end{align}</math>
particularly
<math display="block">\begin{align}
\cosh (2x) &= \sinh^2{x} + \cosh^2{x} = 2\sinh^2 x + 1 = 2\cosh^2 x - 1 \\
\sinh (2x) &= 2\sinh x \cosh x \\
\tanh (2x) &= \frac{2\tanh x}{1+ \tanh^2 x } \\
\end{align}</math>
Also:
<math display="block">\begin{align}
\sinh x + \sinh y &= 2 \sinh \left(\frac{x+y}{2}\right) \cosh \left(\frac{x-y}{2}\right)\\
\cosh x + \cosh y &= 2 \cosh \left(\frac{x+y}{2}\right) \cosh \left(\frac{x-y}{2}\right)\\
\end{align}</math>
===Subtraction formulas===
<math display="block">\begin{align}
\sinh(x - y) &= \sinh x \cosh y - \cosh x \sinh y \\
\cosh(x - y) &= \cosh x \cosh y - \sinh x \sinh y \\
\tanh(x - y) &= \frac{\tanh x -\tanh y}{1- \tanh x \tanh y } \\
\end{align}</math>
Also:<ref>{{cite book|last1=Martin|first1=George E.|title=The foundations of geometry and the non-Euclidean plane|date=1986 | publisher=Springer-Verlag|___location=New York|isbn=3-540-90694-0|page=416|edition=1st corr.}}</ref>
<math display="block">\begin{align}
\sinh x - \sinh y &= 2 \cosh \left(\frac{x+y}{2}\right) \sinh \left(\frac{x-y}{2}\right)\\
\cosh x - \cosh y &= 2 \sinh \left(\frac{x+y}{2}\right) \sinh \left(\frac{x-y}{2}\right)\\
\end{align}</math>
===Half argument formulas===
<math display="block">\begin{align}
\sinh\left(\frac{x}{2}\right) &= \frac{\sinh x}{\sqrt{2 (\cosh x + 1)} } &&= \sgn x \, \sqrt \frac{\cosh x - 1}{2} \\[6px]
\cosh\left(\frac{x}{2}\right) &= \sqrt \frac{\cosh x + 1}{2}\\[6px]
\tanh\left(\frac{x}{2}\right) &= \frac{\sinh x}{\cosh x + 1} &&= \sgn x \, \sqrt \frac{\cosh x-1}{\cosh x+1} = \frac{e^x - 1}{e^x + 1}
\end{align}</math>
where {{math|sgn}} is the [[sign function]].
If {{math|''x'' ≠ 0}}, then<ref>{{cite web|title=Prove the identity tanh(x/2) = (cosh(x) - 1)/sinh(x) | url=https://math.stackexchange.com/q/1565753 |website=[[StackExchange]] (mathematics) | access-date=24 January 2016}}</ref>
<math display="block"> \tanh\left(\frac{x}{2}\right) = \frac{\cosh x - 1}{\sinh x} = \coth x - \operatorname{csch} x </math>
===Square formulas===
<math display="block">\begin{align}
\sinh^2 x &= \tfrac{1}{2}(\cosh 2x - 1) \\
\cosh^2 x &= \tfrac{1}{2}(\cosh 2x + 1)
\end{align}</math>
===Inequalities===
The following inequality is useful in statistics:<ref>{{cite news |last1=Audibert |first1=Jean-Yves |date=2009 |title=Fast learning rates in statistical inference through aggregation |publisher=The Annals of Statistics |page=1627}} [https://projecteuclid.org/download/pdfview_1/euclid.aos/1245332827]</ref>
<math display="block">\operatorname{cosh}(t) \leq e^{t^2 /2}.</math>
It can be proved by comparing the Taylor series of the two functions term by term.
==Inverse functions as logarithms==
{{main|Inverse hyperbolic function}}
<math display="block">\begin{align}
\operatorname {arsinh} (x) &= \ln \left(x + \sqrt{x^{2} + 1} \right) \\
\operatorname {arcosh} (x) &= \ln \left(x + \sqrt{x^{2} - 1} \right) && x \geq 1 \\
\operatorname {artanh} (x) &= \frac{1}{2}\ln \left( \frac{1 + x}{1 - x} \right) && | x | < 1 \\
\operatorname {arcoth} (x) &= \frac{1}{2}\ln \left( \frac{x + 1}{x - 1} \right) && |x| > 1 \\
\operatorname {arsech} (x) &= \ln \left( \frac{1}{x} + \sqrt{\frac{1}{x^2} - 1}\right) = \ln \left( \frac{1+ \sqrt{1 - x^2}}{x} \right) && 0 < x \leq 1 \\
\operatorname {arcsch} (x) &= \ln \left( \frac{1}{x} + \sqrt{\frac{1}{x^2} +1}\right) && x \ne 0
\end{align}</math>
==Derivatives==
<math display="block">\begin{align}
\frac{d}{dx}\sinh x &= \cosh x \\
\frac{d}{dx}\cosh x &= \sinh x \\
\frac{d}{dx}\tanh x &= 1 - \tanh^2 x = \operatorname{sech}^2 x = \frac{1}{\cosh^2 x} \\
\frac{d}{dx}\coth x &= 1 - \coth^2 x = -\operatorname{csch}^2 x = -\frac{1}{\sinh^2 x} && x \neq 0 \\
\frac{d}{dx}\operatorname{sech} x &= - \tanh x \operatorname{sech} x \\
\frac{d}{dx}\operatorname{csch} x &= - \coth x \operatorname{csch} x && x \neq 0
\end{align}</math>
<math display="block">\begin{align}
\frac{d}{dx}\operatorname{arsinh} x &= \frac{1}{\sqrt{x^2+1}} \\
\frac{d}{dx}\operatorname{arcosh} x &= \frac{1}{\sqrt{x^2 - 1}} && 1 < x \\
\frac{d}{dx}\operatorname{artanh} x &= \frac{1}{1-x^2} && |x| < 1 \\
\frac{d}{dx}\operatorname{arcoth} x &= \frac{1}{1-x^2} && 1 < |x| \\
\frac{d}{dx}\operatorname{arsech} x &= -\frac{1}{x\sqrt{1-x^2}} && 0 < x < 1 \\
\frac{d}{dx}\operatorname{arcsch} x &= -\frac{1}{|x|\sqrt{1+x^2}} && x \neq 0
\end{align}</math>
<!-- from: http://www.pen.k12.va.us/Div/Winchester/jhhs/math/lessons/calculus/tableof.html and http://thesaurus.maths.org/mmkb/entry.html?action=entryById&id=2664 -->
==Second derivatives==
Each of the functions {{math|sinh}} and {{math|cosh}} is equal to its [[second derivative]], that is:
<math display="block"> \frac{d^2}{dx^2}\sinh x = \sinh x </math>
<math display="block"> \frac{d^2}{dx^2}\cosh x = \cosh x \, .</math>
All functions with this property are [[linear combination]]s of {{math|sinh}} and {{math|cosh}}, in particular the [[exponential function]]s <math> e^x </math> and <math> e^{-x} </math>.<ref>{{dlmf|id=4.34}}</ref>
==Standard integrals==
{{For|a full list|list of integrals of hyperbolic functions}}
<math display="block">\begin{align}
\int \sinh (ax)\,dx &= a^{-1} \cosh (ax) + C \\
\int \cosh (ax)\,dx &= a^{-1} \sinh (ax) + C \\
\int \tanh (ax)\,dx &= a^{-1} \ln (\cosh (ax)) + C \\
\int \coth (ax)\,dx &= a^{-1} \ln \left|\sinh (ax)\right| + C \\
\int \operatorname{sech} (ax)\,dx &= a^{-1} \arctan (\sinh (ax)) + C \\
\int \operatorname{csch} (ax)\,dx &= a^{-1} \ln \left| \tanh \left( \frac{ax}{2} \right) \right| + C = a^{-1} \ln\left|\coth \left(ax\right) - \operatorname{csch} \left(ax\right)\right| + C = -a^{-1}\operatorname{arcoth} \left(\cosh\left(ax\right)\right) +C
\end{align}</math>
The following integrals can be proved using [[hyperbolic substitution]]:
<math display="block">\begin{align}
\int {\frac{1}{\sqrt{a^2 + u^2}}\,du} & = \operatorname{arsinh} \left( \frac{u}{a} \right) + C \\
\int {\frac{1}{\sqrt{u^2 - a^2}}\,du} &= \sgn{u} \operatorname{arcosh} \left| \frac{u}{a} \right| + C \\
\int {\frac{1}{a^2 - u^2}}\,du & = a^{-1}\operatorname{artanh} \left( \frac{u}{a} \right) + C && u^2 < a^2 \\
\int {\frac{1}{a^2 - u^2}}\,du & = a^{-1}\operatorname{arcoth} \left( \frac{u}{a} \right) + C && u^2 > a^2 \\
\int {\frac{1}{u\sqrt{a^2 - u^2}}\,du} & = -a^{-1}\operatorname{arsech}\left| \frac{u}{a} \right| + C \\
\int {\frac{1}{u\sqrt{a^2 + u^2}}\,du} & = -a^{-1}\operatorname{arcsch}\left| \frac{u}{a} \right| + C
\end{align}</math>
where ''C'' is the [[constant of integration]].
==Taylor series expressions==
It is possible to express explicitly the [[Taylor series]] at zero (or the [[Laurent series]], if the function is not defined at zero) of the above functions.
<math display="block">\sinh x = x + \frac {x^3} {3!} + \frac {x^5} {5!} + \frac {x^7} {7!} + \cdots = \sum_{n=0}^\infty \frac{x^{2n+1}}{(2n+1)!}</math>
This series is [[convergent series|convergent]] for every [[complex number|complex]] value of {{mvar|x}}. Since the function {{math|sinh ''x''}} is [[odd function|odd]], only odd exponents for {{math|''x''}} occur in its Taylor series.
<math display="block">\cosh x = 1 + \frac {x^2} {2!} + \frac {x^4} {4!} + \frac {x^6} {6!} + \cdots = \sum_{n=0}^\infty \frac{x^{2n}}{(2n)!}</math>
This series is [[convergent series|convergent]] for every [[complex number|complex]] value of {{mvar|x}}. Since the function {{math|cosh ''x''}} is [[even function|even]], only even exponents for {{mvar|x}} occur in its Taylor series.
The sum of the sinh and cosh series is the [[infinite series]] expression of the [[exponential function]].
The following series are followed by a description of a subset of their [[___domain of convergence]], where the series is convergent and its sum equals the function.
<math display="block">\begin{align}
\tanh x &= x - \frac {x^3} {3} + \frac {2x^5} {15} - \frac {17x^7} {315} + \cdots = \sum_{n=1}^\infty \frac{2^{2n}(2^{2n}-1)B_{2n} x^{2n-1}}{(2n)!}, \qquad \left |x \right | < \frac {\pi} {2} \\
\coth x &= x^{-1} + \frac {x} {3} - \frac {x^3} {45} + \frac {2x^5} {945} + \cdots = \sum_{n=0}^\infty \frac{2^{2n} B_{2n} x^{2n-1}} {(2n)!}, \qquad 0 < \left |x \right | < \pi \\
\operatorname{sech} x &= 1 - \frac {x^2} {2} + \frac {5x^4} {24} - \frac {61x^6} {720} + \cdots = \sum_{n=0}^\infty \frac{E_{2 n} x^{2n}}{(2n)!} , \qquad \left |x \right | < \frac {\pi} {2} \\
\operatorname{csch} x &= x^{-1} - \frac {x} {6} +\frac {7x^3} {360} -\frac {31x^5} {15120} + \cdots = \sum_{n=0}^\infty \frac{ 2 (1-2^{2n-1}) B_{2n} x^{2n-1}}{(2n)!} , \qquad 0 < \left |x \right | < \pi
\end{align}</math>
where:
*<math>B_n </math> is the ''n''th [[Bernoulli number]]
*<math>E_n </math> is the ''n''th [[Euler number]]
==Infinite products and continued fractions==
The following expansions are valid in the whole complex plane:
:<math>\sinh x = x\prod_{n=1}^\infty\left(1+\frac{x^2}{n^2\pi^2}\right) =
\cfrac{x}{1 - \cfrac{x^2}{2\cdot3+x^2 -
\cfrac{2\cdot3 x^2}{4\cdot5+x^2 -
\cfrac{4\cdot5 x^2}{6\cdot7+x^2 - \ddots}}}}
</math>
:<math>\cosh x = \prod_{n=1}^\infty\left(1+\frac{x^2}{(n-1/2)^2\pi^2}\right) = \cfrac{1}{1 - \cfrac{x^2}{1 \cdot 2 + x^2 - \cfrac{1 \cdot 2x^2}{3 \cdot 4 + x^2 - \cfrac{3 \cdot 4x^2}{5 \cdot 6 + x^2 - \ddots}}}}</math>
:<math>\tanh x = \cfrac{1}{\cfrac{1}{x} + \cfrac{1}{\cfrac{3}{x} + \cfrac{1}{\cfrac{5}{x} + \cfrac{1}{\cfrac{7}{x} + \ddots}}}}</math>
==Comparison with circular functions==
[[File:Circular and hyperbolic angle.svg|right|upright=1.2|thumb|Circle and hyperbola tangent at (1,1) display geometry of circular functions in terms of [[sector of a circle|circular sector]] area {{mvar|u}} and hyperbolic functions depending on [[hyperbolic sector]] area {{mvar|u}}.]]
The hyperbolic functions represent an expansion of [[trigonometry]] beyond the [[circular function]]s. Both types depend on an [[argument of a function|argument]], either [[angle|circular angle]] or [[hyperbolic angle]].
Since the [[Circular sector#Area|area of a circular sector]] with radius {{mvar|r}} and angle {{mvar|u}} (in radians) is {{math|1=''r''<sup>2</sup>''u''/2}}, it will be equal to {{mvar|u}} when {{math|1=''r'' = {{sqrt|2}}}}. In the diagram, such a circle is tangent to the hyperbola ''xy'' = 1 at (1,1). The yellow sector depicts an area and angle magnitude. Similarly, the yellow and red regions together depict a [[hyperbolic sector]] with area corresponding to hyperbolic angle magnitude.
The legs of the two [[right triangle]]s with [[hypotenuse]] on the ray defining the angles are of length {{radic|2}} times the circular and hyperbolic functions.
The hyperbolic angle is an [[invariant measure]] with respect to the [[squeeze mapping]], just as the circular angle is invariant under rotation.<ref>[[Mellen W. Haskell|Haskell, Mellen W.]], "On the introduction of the notion of hyperbolic functions", [[Bulletin of the American Mathematical Society]] '''1''':6:155–9, [https://www.ams.org/journals/bull/1895-01-06/S0002-9904-1895-00266-9/S0002-9904-1895-00266-9.pdf full text]</ref>
The [[Gudermannian function]] gives a direct relationship between the circular functions and the hyperbolic functions that does not involve complex numbers.
The graph of the function {{tmath|a\cosh (x/a)}} is the [[catenary]], the curve formed by a uniform flexible chain, hanging freely between two fixed points under uniform gravity.
==Relationship to the exponential function==
The decomposition of the exponential function in its [[even–odd decomposition|even and odd parts]] gives the identities
<math display="block">e^x = \cosh x + \sinh x,</math>
and
<math display="block">e^{-x} = \cosh x - \sinh x.</math>
Combined with [[Euler's formula]]
<math display="block">e^{ix} = \cos x + i\sin x,</math>
this gives
<math display="block">e^{x+iy}=(\cosh x+\sinh x)(\cos y+i\sin y)</math>
for the [[general complex exponential function]].
Additionally,
<math display="block">e^x = \sqrt{\frac{1 + \tanh x}{1 - \tanh x}} = \frac{1 + \tanh \frac{x}{2}}{1 - \tanh \frac{x}{2}}</math>
==Hyperbolic functions for complex numbers==
{| style="text-align:center"
|+ Hyperbolic functions in the complex plane
|[[Image:Complex Sinh.jpg|1000x140px|none]]
|[[Image:Complex Cosh.jpg|1000x140px|none]]
|[[Image:Complex Tanh.jpg|1000x140px|none]]
|[[Image:Complex Coth.jpg|1000x140px|none]]
|[[Image:Complex Sech.jpg|1000x140px|none]]
|[[Image:Complex Csch.jpg|1000x140px|none]]
|-
|<math>\sinh(z)</math>
|<math>\cosh(z)</math>
|<math>\tanh(z)</math>
|<math>\coth(z)</math>
|<math>\operatorname{sech}(z)</math>
|<math>\operatorname{csch}(z)</math>
|}
Since the [[exponential function]] can be defined for any [[complex number|complex]] argument, we can also extend the definitions of the hyperbolic functions to complex arguments. The functions {{math|sinh ''z''}} and {{math|cosh ''z''}} are then [[Holomorphic function|holomorphic]].
Relationships to ordinary trigonometric functions are given by [[Euler's formula]] for complex numbers:
<math display="block">\begin{align}
e^{i x} &= \cos x + i \sin x \\
e^{-i x} &= \cos x - i \sin x
\end{align}</math>
so:
<math display="block">\begin{align}
\cosh(ix) &= \frac{1}{2} \left(e^{i x} + e^{-i x}\right) = \cos x \\
\sinh(ix) &= \frac{1}{2} \left(e^{i x} - e^{-i x}\right) = i \sin x \\
\tanh(ix) &= i \tan x \\
\cosh(x+iy) &= \cosh(x) \cos(y) + i \sinh(x) \sin(y) \\
\sinh(x+iy) &= \sinh(x) \cos(y) + i \cosh(x) \sin(y) \\
\tanh(x+iy) &= \frac{\tanh(x) + i \tan(y)}{1 + i \tanh(x) \tan(y)} \\
\cosh x &= \cos(ix) \\
\sinh x &= - i \sin(ix) \\
\tanh x &= - i \tan(ix)
\end{align}</math>
Thus, hyperbolic functions are [[periodic function|periodic]] with respect to the imaginary component, with period <math>2 \pi i</math> (<math>\pi i</math> for hyperbolic tangent and cotangent).
==See also==
* [[e (mathematical constant)]]
* [[Equal incircles theorem]], based on sinh
* [[Hyperbolastic functions]]
* [[Hyperbolic growth]]
* [[Inverse hyperbolic function]]s
* [[List of integrals of hyperbolic functions]]
* [[Poinsot's spirals]]
* [[Sigmoid function]]
* [[Soboleva modified hyperbolic tangent]]
* [[Trigonometric functions]]
==References==
{{Reflist|refs=
<ref name="Osborn, 1902" >{{Cite journal | first=G. | last=Osborn | jstor=3602492 | title=Mnemonic for hyperbolic formulae | journal=[[The Mathematical Gazette]] | page=189 | volume=2 |issue=34 | date=July 1902 | doi=10.2307/3602492 | s2cid=125866575 | url=https://zenodo.org/record/1449741 }}</ref>
}}
==External links==
{{Commons category|Hyperbolic functions}}
*{{springer|title=Hyperbolic functions|id=p/h048250}}
*[http://planetmath.org/hyperbolicfunctions Hyperbolic functions] on [[PlanetMath]]
*[https://web.archive.org/web/20071006172054/http://glab.trixon.se/ GonioLab]: Visualization of the unit circle, trigonometric and hyperbolic functions ([[Java Web Start]])
*[http://www.calctool.org/CALC/math/trigonometry/hyperbolic Web-based calculator of hyperbolic functions]
{{Trigonometric and hyperbolic functions}}
{{Authority control}}
{{DEFAULTSORT:Hyperbolic Function}}
[[Category:Hyperbolic functions| ]]
[[Category:Exponentials]]
[[Category:Hyperbolic geometry]]
[[Category:Analytic functions]]
|