Probability vector: Difference between revisions

Content deleted Content added
typo, added another example to make sure people realize it can have many dimensions (nothing to do with spatial dimensions)
Fix for parallel construction.
 
(46 intermediate revisions by 33 users not shown)
Line 1:
{{Short description|Vector with non-negative entries that add up to one}}
{{redirect|Stochastic vector|the concept of a random vector|Multivariate random variable}}
In [[mathematics]] and [[statistics]], a '''probability vector''' or '''stochastic vector''' is a [[vector space|vector]] with non-negative entries that add up to one.
 
The positions (indices) of a probability vector represent the possible outcomes of a [[discrete random variable]], and the vector gives us the [[probability mass function]] of that random variable, which is the standard way of characterizing a [[discrete probability distribution]].<ref>{{citation
Here are some examples of probability vectors:
| last = Jacobs | first = Konrad
| doi = 10.1007/978-3-0348-8645-1
| isbn = 3-7643-2591-7
| mr = 1139766
| page = 45
| publisher = Birkhäuser Verlag, Basel
| series = Basler Lehrbücher [Basel Textbooks]
| title = Discrete Stochastics
| url = https://books.google.com/books?id=2Rv_i4-01JEC&pg=PA45
| volume = 3
| year = 1992}}.</ref>
 
==Examples==
<math>
Here are some examples of probability vectors:. The vectors can be either columns or rows.
x_0=\begin{bmatrix}0.5 \\ 0.25 \\ 0.25 \end{bmatrix},\;
 
*<math>
x_1=\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix},\;
x_0=\begin{bmatrix}0.5 \\ 0.25 \\ 0.25 \end{bmatrix},\;</math>
*</math>
x_1=\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix},\;</math>
*<math>
x_2=\begin{bmatrix} 0.65 \\& 0.35 \end{bmatrix},\;</math>
*<math>
x_3=\begin{bmatrix} 0.3 & 0.5 & 0.07 & 0.1 & 0.03 \end{bmatrix}.
</math>
 
==Geometric interpretation==
x_2=\begin{bmatrix} 0.65 \\ 0.35 \end{bmatrix},\;
Writing out the vector components of a vector <math>p</math> as
 
x_3:<math>p=\begin{bmatrix}0.3 p_1 \\ 0.5p_2 \\ 0.07\vdots \\ p_n 0.1 \end{bmatrix}\quad \text{or} \quad p=\begin{bmatrix} p_1 & p_2 & \cdots & 0.03p_n \end{bmatrix}.</math>
 
</math>
the vector components must sum to one:
 
:<math>\sum_{i=1}^n p_i = 1</math>
 
Each individual component must have a probability between zero and one:
 
:<math>0\le p_i \le 1</math>
 
for all <math>i</math>. Therefore, the set of stochastic vectors coincides with the [[Simplex#The standard simplex|standard <math>(n-1)</math>-simplex]]. It is a point if <math>n=1</math>, a segment if <math>n=2</math>, a (filled) triangle if <math>n=3</math>, a (filled) [[tetrahedron]] if <math>n=4</math>, etc.
 
==Properties==
* The mean of the components of any probability vector is <math> 1/n </math>.
* The shortest probability vector has the value <math> 1/n </math> as each component of the vector, and has a length of <math display="inline">1/\sqrt n</math>.
* The longest probability vector has the value 1 in a single component and 0 in all others, and has a length of 1.
* The shortest vector corresponds to maximum uncertainty, the longest to maximum certainty.
* The length of a probability vector is equal to <math display="inline">\sqrt {n\sigma^2 + 1/n} </math>; where <math> \sigma^2 </math> is the variance of the elements of the probability vector.
 
==See also==
* [[Stochastic matrix]]
* [[Dirichlet distribution]]
 
==References==
{{Reflist}}
 
{{DEFAULTSORT:Probability Vector}}
[[Category:Probability theory]]
[[Category:Vectors (mathematics and physics)]]