Content deleted Content added
m →See also: Added residue/Cachy integral links. |
→Calculation: Added a tip-off that the condition in the last sentence would be coming |
||
(13 intermediate revisions by 10 users not shown) | |||
Line 1:
{{Short description|Way of writing a meromorphic function}}
In [[complex analysis]], a '''partial fraction expansion''' is a way of writing a [[meromorphic function]] ==Motivation==
By using [[polynomial long division]] and the partial fraction technique from algebra, any rational function can be written as a sum of terms of the form
A proper rational function
==Calculation==
Let
* The origin lies inside each curve
* No curve passes through a pole of
*
* <math>\lim_{k\rightarrow \infty} d(\Gamma_k) = \infty</math>, where
* one more condition of compatibility with the poles <math>\lambda_k</math>, described at the end of this section
:<math>\lim_{k\rightarrow \infty} \oint_{\Gamma_k} \left|\frac{f(z)}{z^{p+1}}\right| |dz| < \infty</math>▼
▲Suppose also that there exists an integer ''p'' such that
Writing <math>\operatorname{PP}(
▲:<math>\lim_{k\rightarrow \infty} \oint_{\Gamma_k} \left|\frac{f(z)}{z^{p+1}}\right| dz < \infty</math>
▲Writing PP(''f(z)''; ''z = λ<sub>k</sub>'') for the [[principal part]] of the [[Laurent expansion]] of ''f'' about the point ''λ<sub>k</sub>'', we have
:<math>f(z) = \sum_{k=0}^{\infty} \operatorname{PP}(f(z); z = \lambda_k),</math>
if
:<math>f(z) = \sum_{k=0}^{\infty} (\operatorname{PP}(f(z); z = \lambda_k) + c_{0,k} + c_{1,k}z + \cdots + c_{p,k}z^p),</math>
where the coefficients
:<math>c_{j,k} = \operatorname{Res}_{z=\lambda_k} \frac{f(z)}{z^{j+1}}</math>
Note that in the case of
:<math>f(z) = \frac{a_{-m}}{z^m} + \frac{a_{-m+1}}{z^{m-1}} + \cdots + a_0 + a_1 z + \cdots</math>
Line 42:
:<math>\sum_{j=0}^p c_{j,k}z^j = a_0 + a_1 z + \cdots + a_p z^p</math>
so that the polynomial terms contributed are exactly the [[regular part]] of the Laurent series up to
For the other poles
:<math>c_{j,k} = \frac{1}{\lambda_k^{j+1}} \operatorname{Res}_{z=\lambda_k} f(z)</math>
:<math>\sum_{j=0}^p c_{j,k}z^j = [\operatorname{Res}_{z=\lambda_k} f(z)] \sum_{j=0}^p \frac{1}{\lambda_k^{j+1}} z^j</math>
* To avoid issues with convergence, the poles should be ordered so that if
▲To avoid issues with convergence, the poles should be ordered so that if λ<sub>k</sub> is inside Γ<sub>n</sub>, then λ<sub>j</sub> is also inside Γ<sub>n</sub> for all ''j'' < ''k''.
==Example==
The simplest
▲The simplest examples of meromorphic functions with an infinite number of poles are the non-entire trigonometric functions, so take the function tan(''z''). tan(''z'') is meromorphic with poles at ''(n + 1/2)π'', ''n'' = 0, ±1, ±2, ... The contours ''Γ<sub>k</sub>'' will be squares with vertices at ''±πk ± πki'' traversed counterclockwise, ''k'' > 1, which are easily seen to satisfy the necessary conditions.
On the horizontal sides of
:<math>z = t \pm \pi k i,\ \ t \in [-\pi k, \pi k],</math>
Line 67 ⟶ 65:
:<math>|\tan(z)|^2 = \frac{\sin^2(t)\cosh^2(\pi k) + \cos^2(t)\sinh^2(\pi k)}{\cos^2(t)\cosh^2(\pi k) + \sin^2(t)\sinh^2(\pi k)}</math>
<math>\sinh(
:<math>|\tan(z)|^2 < \frac{\cosh^2(\pi k)(\sin^2(t) + \cos^2(t))}{\sinh^2(\pi k)(\cos^2(t) + \sin^2(t))} = \coth^2(\pi k)</math>
For
With this bound on <math>|\tan(
:<math>\oint_{\Gamma_k} \left|\frac{\tan(z)}{z}\right| dz \le \operatorname{length}(\Gamma_k) \max_{z\in \Gamma_k} \left|\frac{\tan(z)}{z}\right| < 8k \pi \frac{\coth(\pi)}{k\pi} = 8\coth(\pi) < \infty.</math>
Therefore
:<math>\tan(z) = \sum_{k=0}^{\infty} (\operatorname{PP}(\tan(z); z = \lambda_k) + \operatorname{Res}_{z=\lambda_k} \frac{\tan(z)}{z}).</math>
The principal parts and [[residue (complex analysis)|residue]]s are easy enough to calculate, as all the poles of <math>\tan(
:<math>\operatorname{PP}(\tan(z); z = (n + \frac{1}{2})\pi) = \frac{-1}{z - (n + \frac{1}{2})\pi}</math>
:<math>\operatorname{Res}_{z=(n + \frac{1}{2})\pi} \frac{\tan(z)}{z} = \frac{-1}{(n + \frac{1}{2})\pi}</math>
We can ignore
:<math>\tan(z) = \sum_{k=0}^{\infty} \left[\left(\frac{-1}{z - (k + \frac{1}{2})\pi} - \frac{1}{(k + \frac{1}{2})\pi}\right) + \left(\frac{-1}{z + (k + \frac{1}{2})\pi} + \frac{1}{(k + \frac{1}{2})\pi}\right)\right]</math>
Line 97 ⟶ 95:
===Infinite products===
Because the partial fraction expansion often yields sums of
:<math>\tan(z) = -\sum_{k=0}^{\infty} \left(\frac{1}{z - (k + \frac{1}{2})\pi} + \frac{1}{z + (k + \frac{1}{2})\pi}\right)</math>
Line 126 ⟶ 124:
:<math>\tan(z) = 2\sum_{k=0}^{\infty} \sum_{n=0}^{\infty} \frac{2^{2n+2}}{(2k + 1)^{2n+2}\pi^{2n+2}} z^{2n + 1},</math>
which shows that the coefficients
:<math>a_{2n+1} = \frac{T_{2n+1}}{(2n+1)!} = \frac{2^{2n+3}}{\pi^{2n+2}} \sum_{k=0}^{\infty} \frac{1}{(2k + 1)^{2n+2}}</math>
:<math>a_{2n} = \frac{T_{2n}}{(2n)!} = 0,</math>
where
Conversely, we can compare this formula to the Taylor expansion for <math>\tan(
:<math>\tan(z) = z + \frac{1}{3}z^3 + \frac{2}{15}z^5 + \cdots</math>
|