Design knowledge: Difference between revisions

Content deleted Content added
Xfzha (talk | contribs)
No edit summary
Cewbot (talk | contribs)
m Normalize {{Multiple issues}}: Remove {{Multipleissues}} for only 1 maintenance template(s): COI
 
(43 intermediate revisions by 33 users not shown)
Line 1:
{{COI|date=January 2022}}
There is a large body of knowledge that designers call upon and use during the design process to match the ever-increasing
complexity of design problems <ref> X.F. Zha, H. Du, Knowledge intensive collaborative design modeling and support, part I: Review, distributed models and framework, Computers in Industry 57 (2006) 39–55 </ref>. '''Design knowledge''' can be classified into two categories <ref>M. Stokes, Managing Engineering Knowledge: MOKA Methodology for Knowledge Based Engineering Applications, MOKA Consortium, London,2001.</ref>: '''product knowledge''' and '''design process knowledge'''.
 
There is a large [[body of knowledge]] that [[designer]]s call upon and use during the [[design process]] to match the ever-increasing complexity of design problems.<ref>X.F. Zha, H. Du, Knowledge intensive collaborative design modeling and support, part I: Review, distributed models and framework, Computers in Industry 57 (2006) 39–55</ref> '''Design knowledge''' can be classified into two categories:<ref>M. Stokes, Managing Engineering Knowledge: MOKA Methodology for Knowledge Based Engineering Applications, MOKA Consortium, London,2001.</ref> '''product knowledge''' and '''design process knowledge'''.
'''Product knowledge''' has been fairly studied and a number of modeling techniques have been
developed. Most of them are tailored to specific products or
specific aspects of the design activities. For example, geometric
modeling is used mainly for supporting detailed design, while
knowledge modeling is working for supporting conceptual
designs. Based on these techniques, a design repository project
at NIST attempts to model three fundamental facets of an
artifact representation <ref>S. Szykman, R.D. Sriram, W. Regli, The role of knowledge in nextgeneration product development systems, ASME Journal of Computin and Information Science in Engineering 1 (1) (2001) 3–11.</ref> <ref>S. Szykman, Architecture and implementation of a design repository system, in: Proceedings of ASME DETC2002, 2002, Paper No. DETC2002/CIE-34463.</ref>: the physical layout of the artifact
(form), an indication of the overall effect that the artifact
creates (function), and a causal account of the operation of the
artifact (behavior). The recent NIST research effort towards the
development of the basic foundations of the next generation of
CAD systems suggested a core representation for design
information called the '''NIST core product model''' (CPM) <ref>S.J. Fenves, A core product model for representing design information, NISTIR 6736, NIST, Gaithersburg, MD, 2001.</ref> and
a set of derived models defined as extensions of the CPM (e.g.
<ref>X.F. Zha, R.D. Sriram, Feature-based component model for design of embedded system, in: B. Gopalakrishnan (Ed.), Intelligent Systems in Design and Manufacturing, Proceedings of SPIE, vol. 5605, SPIE, Bellingham, WA, vol. V, 2004, pp. 226–237.
</ref><ref>R. Sudarsan, Y.H. Han, S.C. Feng, U. Roy, F. Wang, R.D. Sriram, K. Lyons, Object-oriented representation of electro-mechanical assemblies using UML, NISTIR 7057, NIST, Gaithersburg, MD, 2003.</ref>). The NIST core product model has been developed to
unify and integrate product or assembly information. The CPM
provides a base-level product model that is: not tied to any
vendor software; open; non-proprietary; expandable; independent
of any one product development process; capable of
capturing the engineering context that is most commonly
shared in product development activities. The core model
focuses on artifact representation including function, form,
behavior, material, physical and functional decompositions,
and relationships among these concepts. The entity-relationship
data model influences the model heavily; accordingly, it
consists of two sets of classes, called object and relationship,
equivalent to the UML class and association class, respectively.
 
==Product Knowledge==
'''Design process knowledge''' can be described in two levels:
'''Product knowledge''' has been fairly studied and a number of modeling techniques have been developed. Most of them are tailored to specific products or specific aspects of the design activities. For example, [[geometric modeling]] is used mainly for supporting detailed design, while [[knowledge modeling]] is working for supporting conceptual designs. Based on these techniques, a design repository project at [[NIST]] attempts to model three fundamental facets of an artifact representation:<ref>S. Szykman, R.D. Sriram, W. Regli, The role of knowledge in next generation product development systems, ASME Journal of Computing and Information Science in Engineering 1 (1) (2001) 3–11.</ref><ref>S. Szykman, Architecture and implementation of a design repository system, in: Proceedings of ASME DETC2002, 2002, Paper No. DETC2002/CIE-34463.</ref> the physical layout of the artifact (form), an indication of the overall effect that the artifact creates (function), and a causal account of the operation of the artifact (behavior). The recent NIST research effort towards the development of the basic foundations of the next generation of [[Computer-aided design|CAD]] systems suggested a core representation for design information called the '''NIST core product model''' (CPM) <ref>S.J. Fenves, A core product model for representing design information, [[National Institute of Standards and Technology|NIST]]<span title="Interagency Report">IR</span> 6736, NIST, Gaithersburg, MD, 2001.</ref> and a set of derived models defined as extensions of the CPM (e.g.<ref>X.F. Zha, R.D. Sriram, Feature-based component model for design of embedded system, in: B. Gopalakrishnan (Ed.), Intelligent Systems in Design and Manufacturing, Proceedings of SPIE, vol. 5605, SPIE, Bellingham, WA, vol. V, 2004, pp. 226–237.</ref><ref>R. Sudarsan, Y.H. Han, S.C. Feng, U. Roy, F. Wang, R.D. Sriram, K. Lyons, Object-oriented representation of electro-mechanical assemblies using UML, NISTIR 7057, NIST, Gaithersburg, MD, 2003.</ref>). The NIST core product model has been developed to unify and integrate product or assembly information. The CPM
design activities and design rationale <ref>X.F. Zha, R. D. Sriram, et al., Knowledge-intensive collaborative decision support for design process: hybrid decision support model and agent, Computers in Industry 59 (2008) </ref>. The importance of
provides a base-level product model that is: not tied to any vendor software; open; non-proprietary; expandable; independent of any one product development process; capable of capturing the engineering context that is most commonly shared in product development activities. The core model focuses on artifact representation including function, form, behavior, material, physical and functional decompositions, and relationships among these concepts. The [[entity-relationship]] data model influences the model heavily; accordingly, it consists of two sets of classes, called object and relationship, equivalent to the [[Unified Modeling Language|UML]] class and association class, respectively.
representation for design rationale has been recognized but it is
a more complex issue that extends beyond artifact function. The
'''design structure matrix''' (DSM) has been used for modeling
design process (activities) and some related research efforts
have been conducted. For example, a web-based prototype
system for modeling the product development process using a
multi-tiered DSM is developed at MIT. However, few research
endeavors have been found on design rationale <ref>F. Pena-Mora, R.D. Sriram, R. Logcher, SHARED DRIMS: SHARED design recommendation and intent management system, in: Enabling Technologies: Infrastructure for Collaborative Enterprises, IEEE Press,1993, pp. 213–221.</ref><ref>F. Pena-Mora, R.D. Sriram, R. Logcher, Conflict mitigation system for collaborative engineering, AI EDAM—Special Issue of Concurrent Engineering 9 (2) (1995) 101–123.</ref>.
 
==Design Process Knowledge==
In terms of representation scenarios, '''design knowledge''' can
'''Design process knowledge''' can be described in two levels: design activities and design rationale.<ref>X.F. Zha, R. D. Sriram, et al., Knowledge-intensive collaborative decision support for design process: hybrid decision support model and agent, Computers in Industry 59 (2008)</ref> The importance of representation for design rationale has been recognized but it is a more complex issue that extends beyond artifact function. The [[design structure matrix]] (DSM) has been used for modeling design process (activities) and some related research efforts have been conducted. For example, a web-based prototype system for modeling the product development process using a multi-tiered DSM is developed at MIT. However, few research endeavors have been found on design rationale.<ref>F. Pena-Mora, R.D. Sriram, R. Logcher, SHARED DRIMS: SHARED design recommendation and intent management system, in: Enabling Technologies: Infrastructure for Collaborative Enterprises, IEEE Press,1993, pp. 213–221.</ref><ref>F. Pena-Mora, R.D. Sriram, R. Logcher, Conflict mitigation system for collaborative engineering, AI EDAM—Special Issue of Concurrent Engineering 9 (2) (1995) 101–123.</ref>
also be categorized into off-line and on-line knowledge.
The former refers to existing knowledge representation,
including design knowledge in handbook and design ‘‘know-how’’,
etc.; the latter refers to the new design knowledge
created in the course of design activities by designers
themselves. For the off-line knowledge, there are two
representation approaches. One is to highly abstract and
categorize existing knowledge including experiences into a
series of design principles, rationales and constraints. TRIZ is a
good instance of this approach. The other is to represent a
collection of design knowledge into a certain case for
description. '''Case-based design''' is an example of this approach
<ref>W.H.Wood III, A.M. Agogino, Case based conceptual design information server for concurrent engineering, Computer-Aided Design 8 (5) (1996) 361–369.
</ref>. The key issue is on the computerization of the
design knowledge representation. For instance, researchers at
the Engineering Design Centre at Lancaster University, UK
established a unique knowledge representation methodology
and knowledge base vocabulary based on the theory of
domains, design principles and computer modeling. They have
developed a radical software tool for engineering knowledge
management. The tool provides an engineering system designer
with the capability to search a knowledge base of past solutions,
and other known technologies to explored viable alternatives
for product design. The on-line '''knowledge representation''' is to
capture the dynamic design knowledge in a certain format for
design re-use and archive. A few research efforts have been
found in this area. Blessing <ref>L.T.M. Blessing, A process-based approach to computer supported engineering design, Ph.D. Thesis, University of Twente, 1993.</ref> proposes the process-based
support system (PROSUS) based on a model of the design
process rather than the product. It uses design matrix to
represent the design process as a structured set of issues and
activities. Together with the common '''product data model'''
(CPDM), PROSUS supports the capture of all outputs of the
design activity.
 
==Representation Scenarios==
'''Ontologies''' are being used for product representation (e.g. <ref>L. Patil, D. Dutta, R.D. Sriram, Ontology-based exchange of product data semantics, IEEE Transactions on Automation Science and Engineering 2 (3) (2005) 213–225.</ref>).
In terms of representation scenarios, '''design knowledge''' can also be categorized into off-line and on-line knowledge. Design process knowledge can be categorized into ontologies.
Research suggests, therefore, that there is a need to provide
'''computer support''' that will supply clear and complete design
knowledge and also facilitate designer intervention and
customization during the decision-making activities in the
design process <ref>A.M. Madni, The role of human factors in expert systems design and acceptance, Human Factors 30 (4) (1988) 395–414.</ref>. For example, WebCADET <ref>P.A. Rodgers, A.P. Huxor, N.H.M. Caldwell, Design support using distributed web-based AI tools, Research in Engineering Design 11 (1999) 31–44.</ref> is a design
support system that uses distributed Web-based AI
tools. It uses the ‘‘AI as text’’ approach, where '''knowledge-based systems''' (KBSs) can be seen as a medium to
facilitate the communication of design knowledge between
designers. The system can provide support for designers when
searching for design knowledge.
 
===Off-line Knowledge===
== References ==
'''Offline Knowledge''' refers to existing [[knowledge representation]], including design knowledge in handbook and design ‘‘[[know-how]]’’, etc.; the latter refers to the new design knowledge created in the course of design activities by designers themselves. For the off-line knowledge, there are two representation approaches. One is to highly abstract and categorize existing knowledge including experiences into a series of design principles, rationales and constraints. [[TRIZ]] is a good instance of this approach. The other is to represent a collection of design knowledge into a certain case for description. '''[[Case-based reasoning|Case-based]] design''' is an example of this approach.<ref>W.H.Wood III, A.M. Agogino, Case based conceptual design information server for concurrent engineering, Computer-Aided Design 8 (5) (1996) 361–369.</ref> The key issue is on the computerization of the
design knowledge representation. For instance, researchers at the Engineering Design Centre at Lancaster University, UK established a unique knowledge representation methodology and knowledge base vocabulary based on the theory of domains, design principles and [[computer modeling]]. They developed a software tool for engineering knowledge management. The tool provides an engineering system designer with the capability to search a knowledge base of past solutions, and other known technologies to explored viable alternatives for product design.{{Citation needed|date=September 2011}}
 
===On-line Knowledge===
<references/>
'''On-line knowledge representation''' is capturing the dynamic design knowledge in a certain format for design re-use and archive. A few research efforts have been found in this area. Blessing <ref>L.T.M. Blessing, A process-based approach to computer supported engineering design, Ph.D. Thesis, University of Twente, 1993.</ref> proposes the process-based support system (PROSUS) based on a model of the design process rather than the product. It uses a [[design matrix]] to represent the design process as a structured set of issues and activities. Together with the common product data model (CPDM), PROSUS supports the capture of all outputs of the design activity.
{{reflist}}
 
===Ontologies===
[[Ontology (information science)|Ontologies]] are being used for product representation (e.g.<ref>L. Patil, D. Dutta, R.D. Sriram, Ontology-based exchange of product data semantics, IEEE Transactions on Automation Science and Engineering 2 (3) (2005) 213–225.</ref><ref>C. Bock, X.F. Zha, Ontological product modeling for collaborative design, NIST IR, NIST, Gaithersburg, MD, 2007</ref><ref>V.C. Liang, C. Bock, X.F. Zha, Ontological modeling platform, NIST IR, NIST, Gaithersburg, MD, 2008</ref>). Research suggests that there is a need to provide computer support that will supply clear and complete design knowledge and also facilitate designer intervention and customization during the decision-making activities in the design process.<ref>A.M. Madni, The role of human factors in expert systems design and acceptance, Human Factors 30 (4) (1988) 395–414.</ref> For example, WebCADET <ref>P.A. Rodgers, A.P. Huxor, N.H.M. Caldwell, Design support using distributed web-based AI tools, Research in Engineering Design 11 (1999) 31–44.</ref> is a design support system that uses distributed Web-based [[AI]] tools. It uses the AI as text approach, where [[knowledge-based systems]] (KBSs) can be seen as a medium to facilitate the communication of design knowledge between designers. The system can provide support for designers when searching for design knowledge.
 
==References==
{{reflist}}
 
{{Design}}
----
[http://www.example.com link title]
 
* M. Stokes, Managing Engineering Knowledge: MOKA Methodology for Knowledge Based Engineering Applications, MOKA Consortium, London,2001.
 
* S. Szykman, R.D. Sriram, W. Regli, The role of knowledge in nextgeneration product development systems, ASME Journal of Computin and Information Science in Engineering 1 (1) (2001) 3–11.
 
* S. Szykman, Architecture and implementation of a design repository system, in: Proceedings of ASME DETC2002, 2002, Paper No. DETC2002/CIE-34463.
 
* S.J. Fenves, A core product model for representing design information, NISTIR 6736, NIST, Gaithersburg, MD, 2001.
 
* X.F. Zha, R.D. Sriram, Feature-based component model for design of embedded system, in: B. Gopalakrishnan (Ed.), Intelligent Systems in Design and Manufacturing, Proceedings of SPIE, vol. 5605, SPIE, Bellingham, WA, vol. V, 2004, pp. 226–237.
 
* F. Pena-Mora, R.D. Sriram, R. Logcher, SHARED DRIMS: SHARED design recommendation and intent management system, in: Enabling Technologies: Infrastructure for Collaborative Enterprises, IEEE Press,1993, pp. 213–221.
 
* F. Pena-Mora, R.D. Sriram, R. Logcher, Conflict mitigation system for collaborative engineering, AI EDAM—Special Issue of Concurrent Engineering 9 (2) (1995) 101–123.
 
* W.H.Wood III, A.M. Agogino, Case based conceptual design information server for concurrent engineering, Computer-Aided Design 8 (5) (1996) 361–369.
 
* L.T.M. Blessing, A process-based approach to computer supported engineering design, Ph.D. Thesis, University of Twente, 1993.
 
* L. Patil, D. Dutta, R.D. Sriram, Ontology-based exchange of product data semantics, IEEE Transactions on Automation Science and Engineering 2 (3) (2005) 213–225.
 
* A.M. Madni, The role of human factors in expert systems design and acceptance, Human Factors 30 (4) (1988) 395–414.
 
* P.A. Rodgers, A.P. Huxor, N.H.M. Caldwell, Design support using distributed web-based AI tools, Research in Engineering Design 11 (1999) 31–44.
 
* X.F. Zha, H. Du, Knowledge intensive collaborative design modeling and support, part I: Review, distributed models and framework, Computers in Industry 57 (2006) 39–55
 
* R. Sudarsan, Y.H. Han, S.C. Feng, U. Roy, F. Wang, R.D. Sriram, K. Lyons, Object-oriented representation of electro-mechanical assemblies using UML, NISTIR 7057, NIST, Gaithersburg, MD, 2003.
 
{{DEFAULTSORT:Design Knowledge}}
* X.F. Zha, R. D. Sriram, et al., Knowledge-intensive collaborative decision support for design process: hybrid decision support model and agent, Computers in Industry 59 (2008)
[[Category:Design]]