Content deleted Content added
→Works cited: fixed cs1 date errors |
|||
(662 intermediate revisions by more than 100 users not shown) | |||
Line 1:
{{short description|Algebraic structure modeling logical operations}}
{{for-multi|an introduction to the subject|Boolean algebra|an alternative presentation|Boolean algebras canonically defined}}
{{Use dmy dates|date=November 2020}}
In [[abstract algebra]], a '''Boolean algebra''' or '''Boolean lattice''' is a [[complemented lattice|complemented]] [[distributive lattice]]. This type of [[algebraic structure]] captures essential properties of both [[Set (mathematics)|set]] operations and [[logic]] operations. A Boolean algebra can be seen as a generalization of a [[power set]] algebra or a [[field of sets]], or its elements can be viewed as generalized [[truth value]]s. It is also a special case of a [[De Morgan algebra]] and a [[Kleene algebra (with involution)]].
Every Boolean algebra [[#Boolean rings|gives rise]] to a [[Boolean ring]], and vice versa, with [[ring (mathematics)|ring]] multiplication corresponding to [[logical conjunction|conjunction]] or [[meet (mathematics)|meet]] ∧, and ring addition to [[exclusive or|exclusive disjunction]] or [[symmetric difference]] (not [[logical disjunction|disjunction]] ∨). However, the theory of Boolean rings has an inherent asymmetry between the two operators, while the [[axiom]]s and theorems of Boolean algebra express the symmetry of the theory described by the [[Duality principle (Boolean algebra)|duality principle]].{{sfn|Givant|Halmos|2009|p=20}}
[[Image:Hasse diagram of powerset of 3.svg|thumb|right|250px|Boolean lattice of subsets]]
__TOC__
== History ==
<!-- [[Boolean algebra (history)]] redirects here -->
The term "Boolean algebra" honors [[George Boole]] (1815–1864), a self-educated English mathematician. He introduced the [[algebraic system]] initially in a small pamphlet, ''The Mathematical Analysis of Logic'', published in 1847 in response to an ongoing public controversy between [[Augustus De Morgan]] and [[Sir William Hamilton, 9th Baronet|William Hamilton]], and later as a more substantial book, ''[[The Laws of Thought]]'', published in 1854. Boole's formulation differs from that described above in some important respects. For example, conjunction and disjunction in Boole were not a dual pair of operations. Boolean algebra emerged in the 1860s, in papers written by [[William Jevons]] and [[Charles Sanders Peirce]]. The first systematic presentation of Boolean algebra and [[distributive lattice]]s is owed to the 1890 ''Vorlesungen'' of [[Ernst Schröder (mathematician)|Ernst Schröder]]. The first extensive treatment of Boolean algebra in English is [[A. N. Whitehead]]'s 1898 ''Universal Algebra''. Boolean algebra as an axiomatic algebraic structure in the modern axiomatic sense begins with a 1904 paper by [[Edward V. Huntington]]. Boolean algebra came of age as serious mathematics with the work of [[Marshall Stone]] in the 1930s, and with [[Garrett Birkhoff]]'s 1940 ''Lattice Theory''. In the 1960s, [[Paul Cohen (mathematician)|Paul Cohen]], [[Dana Scott]], and others found deep new results in [[mathematical logic]] and [[axiomatic set theory]] using offshoots of Boolean algebra, namely [[forcing (mathematics)|forcing]] and [[Boolean-valued model]]s.
== Definition ==
A '''Boolean algebra''' is a [[Set (mathematics)|set]] {{math|1=''A''}}, equipped with two [[binary operation]]s {{math|1=∧}} (called "meet" or "and"), {{math|1=∨}} (called "join" or "or"), a [[unary operation]] {{math|1=¬}} (called "complement" or "not") and two elements {{math|1=0}} and {{math|1=1}} in {{math|1=''A''}} (called "bottom" and "top", or "least" and "greatest" element, also denoted by the symbols {{math|1=⊥}} and {{math|1=⊤}}, respectively), such that for all elements {{math|''a''}}, {{math|''b''}} and {{math|''c''}} of {{math|''A''}}, the following [[axiom]]s hold:{{sfn|Davey|Priestley|1990|pp=109, 131, 144}}
:: {| cellpadding=5
|{{math|1=''a'' ∨ (''b'' ∨ ''c'') = (''a'' ∨ ''b'') ∨ ''c''}}
|{{math|1=''a'' ∧ (''b'' ∧ ''c'') = (''a'' ∧ ''b'') ∧ ''c''}}
| [[associativity]]
|-
|{{math|1=''a'' ∨ ''b'' = ''b'' ∨ ''a''}}
|{{math|1=''a'' ∧ ''b'' = ''b'' ∧ ''a''}}
| [[commutativity]]
|-
|{{math|1=''a'' ∨ (''a'' ∧ ''b'') = ''a''}}
|{{math|1=''a'' ∧ (''a'' ∨ ''b'') = ''a''}}
| [[Absorption law|absorption]]
|-
|{{math|1=''a'' ∨ 0 = ''a''}}
|{{math|1=''a'' ∧ 1 = ''a''}}
| [[identity element|identity]]
|-
|{{math|1=''a'' ∨ (''b'' ∧ ''c'') = (''a'' ∨ ''b'') ∧ (''a'' ∨ ''c'') }}
|{{math|1=''a'' ∧ (''b'' ∨ ''c'') = (''a'' ∧ ''b'') ∨ (''a'' ∧ ''c'') }}
| [[distributivity]]
|-
|{{math|1=''a'' ∨ ¬''a'' = 1}}
|{{math|1=''a'' ∧ ¬''a'' = 0}}
| [[complemented lattice|complements]]
|}
Note, however, that the absorption law and even the associativity law can be excluded from the set of axioms as they can be derived from the other axioms (see [[#Axiomatics|Proven properties]]).
A Boolean algebra with only one element is called a '''trivial Boolean algebra''' or a '''degenerate Boolean algebra'''. (In older works, some authors required {{math|0}} and {{math|1}} to be ''distinct'' elements in order to exclude this case.){{citation needed|date=July 2020}}
It follows from the last three pairs of axioms above (identity, distributivity and complements), or from the absorption axiom, that
: {{math|1=''a'' = ''b'' ∧ ''a''}} if and only if {{math|1=''a'' ∨ ''b'' = ''b''}}.
The relation {{math|≤}} defined by {{math|''a'' ≤ ''b''}} if these equivalent conditions hold, is a [[partial order]] with least element 0 and greatest element 1. The meet {{math|1=''a'' ∧ ''b''}} and the join {{math|1=''a'' ∨ ''b''}} of two elements coincide with their [[infimum]] and [[supremum]], respectively, with respect to ≤.
The first four pairs of axioms constitute a definition of a [[bounded lattice]].
It follows from the first five pairs of axioms that any complement is unique.
The set of axioms is [[duality (order theory)|self-dual]] in the sense that if one exchanges {{math|1=∨}} with {{math|1=∧}} and {{math|0}} with {{math|1}} in an axiom, the result is again an axiom. Therefore, by applying this operation to a Boolean algebra (or Boolean lattice), one obtains another Boolean algebra with the same elements; it is called its '''dual'''.{{sfn|Goodstein|2012|p=21ff}}
== Examples ==
* The simplest non-trivial Boolean algebra, the [[two-element Boolean algebra]], has only two elements, {{math|0}} and {{math|1}}, and is defined by the rules:
{|
|-
| width="
|
{| class="wikitable"
|-
!
|-
! {{math|0}}
| {{math|0}} || {{math|0}}
|-
! {{math|1}}
| {{math|0}} || {{math|1}}
|}
|
| width="30" |
|
{| class="wikitable"
|-
!
|-
! {{math|0}}
| {{math|0}} || {{math|1}}
|-
! {{math|1}}
| {{math|1}} || {{math|1}}
|}
|
| width="40" |
|
{| class="wikitable"
|-
! {{math|''a''}} || {{math|0}} || {{math|1}}
|-
! {{math|¬''a''}}
| {{math|1}} ||
|}
|}
:* It has applications in [[logic]], interpreting {{math|0}} as ''false'', {{math|1}} as ''true'',
:* The two-element Boolean algebra is also used for circuit design in [[electrical engineering]];{{refn|group=note|Strictly, electrical engineers tend to use additional states to represent other circuit conditions such as high impedance - see [[IEEE 1164]] or [[IEEE 1364]].}} here 0 and 1 represent the two different states of one [[bit]] in a [[digital circuit]], typically high and low [[voltage]]. Circuits are described by expressions containing variables, and two such expressions are equal for all values of the variables if and only if the corresponding circuits have the same
:* The
:** {{math|1=(''a''
:** {{math|1=(''a''
* The [[power set]] (set of all subsets) of any given nonempty set {{math|''S''}} forms a Boolean algebra, an [[algebra of sets]], with the two operations {{math|1=∨ := ∪}} (union) and {{math|1=∧ := ∩}} (intersection). The smallest element 0 is the [[empty set]] and the largest element {{math|1}} is the set {{math|''S''}} itself.
:* After the two-element Boolean algebra, the simplest Boolean algebra is that defined by the [[power set]] of two atoms:
{|
|-
| width="70" |
|
{| class="wikitable"
|-
! {{math|1=∧}} || {{math|1=0}} || {{math|1=a}} || {{math|1=b}} || {{math|1=1}}
|-
! {{math|1=0}}
| {{math|1=0}} || {{math|1=0}} || {{math|1=0}} || {{math|1=0}}
|-
! {{math|1=a}}
| {{math|1=0}} || {{math|1=a}} || {{math|1=0}} || {{math|1=a}}
|-
! {{math|1=b}}
| {{math|1=0}} || {{math|1=0}} || {{math|1=b}} || {{math|1=b}}
|-
! {{math|1=1}}
| {{math|1=0}} || {{math|1=a}} || {{math|1=b}} || {{math|1=1}}
|}
|
| width="30" |
|
{| class="wikitable"
|-
! {{math|1=∨}} || {{math|1=0}} || {{math|1=a}} || {{math|1=b}} || {{math|1=1}}
|-
! {{math|1=0}}
| {{math|1=0}} || {{math|1=a}} || {{math|1=b}} || {{math|1=1}}
|-
! {{math|1=a}}
| {{math|1=a}} || {{math|1=a}} || {{math|1=1}} || {{math|1=1}}
|-
! {{math|1=b}}
| {{math|1=b}} || {{math|1=1}} || {{math|1=b}} || {{math|1=1}}
|-
! {{math|1=1}}
| {{math|1=1}} || {{math|1=1}} || {{math|1=1}} || {{math|1=1}}
|}
|
| width="40" |
|
{| class="wikitable"
|-
! {{math|1=''x''}} || {{math|1=0}} || {{math|1=a}} || {{math|1=b}} || {{math|1=1}}
|-
! {{math|1=¬''x''}}
| {{math|1=1}} || {{math|1=b}} || {{math|1=a}} || {{math|1=0}}
|}
|}
* The set {{mvar|A}} of all subsets of {{mvar|S}} that are either finite or [[cofinite]] is a Boolean algebra and an [[algebra of sets]] called the [[finite–cofinite algebra]]. If {{mvar|S}} is infinite then the set of all cofinite subsets of {{mvar|S}}, which is called the [[Fréchet filter]], is a free [[ultrafilter]] on {{mvar|A}}. However, the Fréchet filter is not an ultrafilter on the power set of {{mvar|S}}.
* Starting with the [[propositional calculus]] with {{math|κ}} sentence symbols, form the [[Lindenbaum–Tarski algebra|Lindenbaum algebra]] (that is, the set of sentences in the propositional calculus modulo [[logical equivalence]]). This construction yields a Boolean algebra. It is in fact the [[free Boolean algebra]] on {{math|κ}} generators. A truth assignment in propositional calculus is then a Boolean algebra homomorphism from this algebra to the two-element Boolean algebra.
* Given any [[linearly ordered]] set {{math|''L''}} with a least element, the interval algebra is the smallest Boolean algebra of subsets of {{math|''L''}} containing all of the half-open intervals {{math|[''a'', ''b'')}} such that {{math|''a''}} is in {{math|''L''}} and {{math|''b''}} is either in {{math|''L''}} or equal to {{math|∞}}. Interval algebras are useful in the study of [[Lindenbaum–Tarski algebra]]s; every [[countable]] Boolean algebra is isomorphic to an interval algebra.
[[File:Lattice T 30.svg|thumb|x150px|[[Hasse diagram]] of the Boolean algebra of divisors of 30.]]
* For any [[natural number]] {{math|''n''}}, the set of all positive [[divisor]]s of {{math|''n''}}, defining {{math|''a'' ≤ ''b''}} if {{math|''a''}} [[divides]] {{math|''b''}}, forms a [[distributive lattice]]. This lattice is a Boolean algebra if and only if {{math|''n''}} is [[square-free integer|square-free]]. The bottom and the top elements of this Boolean algebra are the natural numbers {{math|1}} and {{math|''n''}}, respectively. The complement of {{math|''a''}} is given by {{math|''n''/''a''}}. The meet and the join of {{math|''a''}} and {{math|''b''}} are given by the [[greatest common divisor]] ({{math|gcd}}) and the [[least common multiple]] ({{math|lcm}}) of {{math|''a''}} and {{math|''b''}}, respectively. The ring addition {{math|''a'' + ''b''}} is given by {{math|lcm(''a'', ''b'') / gcd(''a'', ''b'')}}. The picture shows an example for {{math|1=''n'' = 30}}. As a counter-example, considering the non-square-free {{math|1=''n'' = 60}}, the greatest common divisor of 30 and its complement 2 would be 2, while it should be the bottom element 1.
* Other examples of Boolean algebras arise from [[topology|topological spaces]]: if {{math|''X''}} is a topological space, then the collection of all subsets of {{math|''X''}} that are [[Clopen set|both open and closed]] forms a Boolean algebra with the operations {{math|1=∨ := ∪}} (union) and {{math|1=∧ := ∩}} (intersection).
* If {{mvar|R}} is an arbitrary ring then its set of ''[[central idempotent]]s'', which is the set
<math display=block>A = \left\{e \in R : e^2 = e \text{ and } ex = xe \; \text{ for all } \; x \in R\right\},</math>
becomes a Boolean algebra when its operations are defined by {{math|1=''e'' ∨ ''f'' := ''e'' + ''f'' − ''ef''}} and {{math|1=''e'' ∧ ''f'' := ''ef''}}.
== Homomorphisms and isomorphisms ==
<!-- "Boolean homomorphism" redirects here -->
A ''[[homomorphism]]'' between
: {{math|1=''f''(''a'' ∨ ''b'') = ''f''(''a'') ∨ ''f''(''b'')}},
: {{math|1=''f''(''a'' ∧ ''b'') = ''f''(''a'') ∧ ''f''(''b'')}},
: {{math|1=''f''(0) = 0}},
: {{math|1=''f''(1) = 1}}.
It then follows that {{math|1=''f''(¬''a'') = ¬''f''(''a'')}} for all {{math|''a''}} in {{math|''A''}}. The [[class (set theory)|class]] of all Boolean algebras, together with this notion of morphism, forms a [[full subcategory]] of the [[category theory|category]] of lattices.
<!--The constant function with ''f''(''a'') = 1 for all ''a'' in ''A'' satisfies the first, second, and fourth conditions but not the third (unless ''B'' is the degenerate singleton Boolean algebra with 0 = 1), so it is not a Boolean algebra homomorphism.-->
An ''isomorphism'' between two Boolean algebras {{math|''A''}} and {{math|''B''}} is a homomorphism {{math|''f'' : ''A'' → ''B''}} with an inverse homomorphism, that is, a homomorphism {{math|''g'' : ''B'' → ''A''}} such that the [[function composition|composition]] {{math|''g'' ∘ ''f'' : ''A'' → ''A''}} is the [[identity function]] on {{math|''A''}}, and the composition {{math|''f'' ∘ ''g'' : ''B'' → ''B''}} is the identity function on {{math|''B''}}. A homomorphism of Boolean algebras is an isomorphism if and only if it is [[bijection|bijective]].
== Boolean rings
{{Main|Boolean ring}}
Every Boolean algebra {{math|1=(''A'', ∧, ∨)}} gives rise to a [[ring (algebra)|ring]] {{math|(''A'', +, ·)}} by defining {{math|1=''a'' + ''b'' := (''a'' ∧ ¬''b'') ∨ (''b'' ∧ ¬''a'') = (''a'' ∨ ''b'') ∧ ¬(''a'' ∧ ''b'')}} (this operation is called [[symmetric difference]] in the case of sets and [[Truth table#Exclusive disjunction|XOR]] in the case of logic) and {{math|1=''a'' · ''b'' := ''a'' ∧ ''b''}}. The zero element of this ring coincides with the 0 of the Boolean algebra; the multiplicative identity element of the ring is the {{math|1}} of the Boolean algebra. This ring has the property that {{math|1=''a'' · ''a'' = ''a''}} for all {{math|''a''}} in {{math|''A''}}; rings with this property are called [[Boolean ring]]s.
Conversely, if a Boolean ring {{math|''A''}} is given, we can turn it into a Boolean algebra by defining {{math|1=''x'' ∨ ''y'' := ''x'' + ''y'' + (''x'' · ''y'')}} and {{math|1=''x'' ∧ ''y'' := ''x'' · ''y''}}.{{sfn|Stone|1936}}{{sfn|Hsiang|1985|p=260}}
Since these two constructions are inverses of each other, we can say that every Boolean ring arises from a Boolean algebra, and vice versa. Furthermore, a map {{math|''f'' : ''A'' → ''B''}} is a homomorphism of Boolean algebras if and only if it is a homomorphism of Boolean rings. The [[category theory|categories]] of Boolean rings and Boolean algebras are [[equivalence of categories|equivalent]];{{sfn|Cohn|2003|p=[https://books.google.com/books?id=VESm0MJOiDQC&pg=PA81 81]}} in fact the categories are [[Isomorphism of categories|isomorphic]].
Hsiang (1985) gave a [[Abstract rewriting system|rule-based algorithm]] to [[Word problem (mathematics)|check]] whether two arbitrary expressions denote the same value in every Boolean ring.
<!---probably too much details(?):---
Hsiang (1985) gave a [[Confluence (abstract rewriting)|confluent]] and [[Abstract rewriting system#Termination and convergence|terminating]] [[Abstract rewriting system|rewrite system]] for Boolean rings, thus solving their [[Word problem (mathematics)|word problem]]: to check whether two arbitrary expressions ''s'' and ''t'' denote the same value in every Boolean ring, apply rewrite rules to ''s'' as long as possible, resulting in an expression ''s''<sub>n</sub>, obtain ''t''<sub>n</sub> from ''t'' in a similar way, and check whether ''s''<sub>n</sub> and ''t''<sub>n</sub> are literally identical, except for different parenthezation and order of operands of "+" or "·".
--->
More generally, Boudet, [[Jean-Pierre Jouannaud|Jouannaud]], and Schmidt-Schauß (1989) gave an algorithm to [[Unification (computer science)#Particular background knowledge sets E|solve equations]] between arbitrary Boolean-ring expressions.
Employing the similarity of Boolean rings and Boolean algebras, both algorithms have applications in [[automated theorem proving]].
== Ideals and filters ==
{{Main|Ideal (order theory)|Filter (mathematics)}}
An ''ideal'' of the Boolean algebra {{mvar|A}} is a nonempty subset {{mvar|I}} such that for all {{mvar|x}}, {{mvar|y}} in {{mvar|I}} we have {{math|{{var|x}} ∨ {{var|y}}}} in {{mvar|I}} and for all {{mvar|a}} in {{mvar|A}} we have {{math|{{var|a}} ∧ {{var|x}}}} in {{mvar|I}}. This notion of ideal coincides with the notion of [[ring ideal]] in the Boolean ring {{mvar|A}}. An ideal {{mvar|I}} of {{mvar|A}} is called ''prime'' if {{math|{{var|I}} ≠ {{var|A}}}} and if {{math|{{var|a}} ∧ {{var|b}}}} in {{mvar|I}} always implies {{mvar|a}} in {{mvar|I}} or {{mvar|b}} in {{mvar|I}}. Furthermore, for every {{math|{{var|a}} ∈ {{var|A}}}} we have that {{math|{{var|a}} ∧ −{{var|a}} {{=}} 0 ∈ {{var|I}}}}, and then if {{mvar|I}} is prime we have {{math|{{var|a}} ∈ {{var|I}}}} or {{math|−{{var|a}} ∈ {{var|I}}}} for every {{math|{{var|a}} ∈ {{var|A}}}}. An ideal {{mvar|I}} of {{mvar|A}} is called ''maximal'' if {{math|{{var|I}} ≠ {{var|A}}}} and if the only ideal properly containing {{mvar|I}} is {{mvar|A}} itself. For an ideal {{mvar|I}}, if {{math|{{var|a}} ∉ {{var|I}}}} and {{math|−{{var|a}} ∉ {{var|I}}}}, then {{math|{{var|I}} ∪ {{mset|{{var|a}}}}}} or {{math|{{var|I}} ∪ {{mset|−{{var|a}}}}}} is contained in another proper ideal {{mvar|J}}. Hence, such an {{mvar|I}} is not maximal, and therefore the notions of prime ideal and maximal ideal are equivalent in Boolean algebras. Moreover, these notions coincide with ring theoretic ones of [[prime ideal]] and [[maximal ideal]] in the Boolean ring {{mvar|A}}.
The dual of an ''ideal'' is a ''filter''. A ''filter'' of the Boolean algebra
The ultrafilter lemma has many equivalent formulations: ''every Boolean algebra has an ultrafilter'', ''every ideal in a Boolean algebra can be extended to a prime ideal'', etc.
== Representations ==
It can be shown that every ''finite'' Boolean algebra is isomorphic to the Boolean algebra of all subsets of a finite set. Therefore, the number of elements of every finite Boolean algebra is a [[power of two]].
[[Marshall H. Stone|Stone's]] celebrated ''[[Stone's representation theorem for Boolean algebras|representation theorem for Boolean algebras]]'' states that ''every'' Boolean algebra {{math|''A''}} is isomorphic to the Boolean algebra of all [[
== Axiomatics
{| align="right" class="wikitable collapsible collapsed" style="text-align:left"
! colspan="2" | '''Proven properties'''
|- valign="top"
|
{| align="left" class="collapsible collapsed" style="text-align:left"
! '''UId<sub>1</sub>''' !! !! colspan="2" | If ''x'' ∨ ''o'' = ''x'' for all ''x'', then ''o'' = 0
|-
| Proof: || || colspan="2" | If ''x'' ∨ ''o'' = ''x'', then
|-
| || || 0
|-
| || = || 0 ∨ ''o'' || by assumption
|-
| || = || ''o'' ∨ 0 || by '''Cmm<sub>1</sub>'''
|-
| || = || ''o'' || by '''Idn<sub>1</sub>'''
|}
| '''UId<sub>2</sub>''' [dual] If ''x'' ∧ ''i'' = ''x'' for all ''x'', then ''i'' = 1
|- valign="top"
|
{| align="left" class="collapsible collapsed" style="text-align:left"
! '''Idm<sub>1</sub>''' !! !! ''x'' ∨ ''x'' = ''x''
|-
| Proof: || || ''x'' ∨ ''x''
|-
| || = || (''x'' ∨ ''x'') ∧ 1 || by '''Idn<sub>2</sub>'''
|-
| || = || (''x'' ∨ ''x'') ∧ (''x'' ∨ ¬''x'') || by '''Cpl<sub>1</sub>'''
|-
| || = || ''x'' ∨ (''x'' ∧ ¬''x'') || by '''Dst<sub>1</sub>'''
|-
| || = || ''x'' ∨ 0 || by '''Cpl<sub>2</sub>'''
|-
| || = || ''x'' || by '''Idn<sub>1</sub>'''
|}
| '''Idm<sub>2</sub>''' [dual] ''x'' ∧ ''x'' = ''x''
|- valign="top"
|
{| align="left" class="collapsible collapsed" style="text-align:left"
! '''Bnd<sub>1</sub>''' !! !! ''x'' ∨ 1 = 1
|-
| Proof: || || ''x'' ∨ 1
|-
| || = || (''x'' ∨ 1) ∧ 1 || by '''Idn<sub>2</sub>'''
|-
| || = || 1 ∧ (''x'' ∨ 1) || by '''Cmm<sub>2</sub>'''
|-
| || = || (''x'' ∨ ¬''x'') ∧ (''x'' ∨ 1) || by '''Cpl<sub>1</sub>'''
|-
| || = || ''x'' ∨ (¬''x'' ∧ 1) || by '''Dst<sub>1</sub>'''
|-
| || = || ''x'' ∨ ¬''x'' || by '''Idn<sub>2</sub>'''
|-
| || = || 1 || by '''Cpl<sub>1</sub>'''
|}
| '''Bnd<sub>2</sub>''' [dual] ''x'' ∧ 0 = 0
|- valign="top"
|
{| align="left" class="collapsible collapsed" style="text-align:left"
! '''Abs<sub>1</sub>''' !! !! ''x'' ∨ (''x'' ∧ ''y'') = ''x''
|-
| Proof: || || ''x'' ∨ (''x'' ∧ ''y'')
|-
| || = || (''x'' ∧ 1) ∨ (''x'' ∧ ''y'') || by '''Idn<sub>2</sub>'''
|-
| || = || ''x'' ∧ (1 ∨ ''y'') || by '''Dst<sub>2</sub>'''
|-
| || = || ''x'' ∧ (''y'' ∨ 1) || by '''Cmm<sub>1</sub>'''
|-
| || = || ''x'' ∧ 1 || by '''Bnd<sub>1</sub>'''
|-
| || = || ''x'' || by '''Idn<sub>2</sub>'''
|}
| '''Abs<sub>2</sub>''' [dual] ''x'' ∧ (''x'' ∨ ''y'') = ''x''
|- valign="top"
| colspan="2" |
{| align="left" class="collapsible collapsed" style="text-align:left"
! '''UNg''' !! !! colspan="2" | If ''x'' ∨ ''x''<sub>n</sub> = 1 and ''x'' ∧ ''x''<sub>n</sub> = 0, then ''x''<sub>n</sub> = ¬''x''
|-
| Proof: || || colspan="2" | If ''x'' ∨ ''x''<sub>n</sub> = 1 and ''x'' ∧ ''x''<sub>n</sub> = 0, then
|-
| || ||''x''<sub>n</sub>
|-
| || = || ''x''<sub>n</sub> ∧ 1 || by '''Idn<sub>2</sub>'''
|-
| || = || ''x''<sub>n</sub> ∧ (''x'' ∨ ¬''x'') || by '''Cpl<sub>1</sub>'''
|-
| || = || (''x''<sub>n</sub> ∧ ''x'') ∨ (''x''<sub>n</sub> ∧ ¬''x'') || by '''Dst<sub>2</sub>'''
|-
| || = || (''x'' ∧ ''x''<sub>n</sub>) ∨ (¬''x'' ∧ ''x''<sub>n</sub>) || by '''Cmm<sub>2</sub>'''
|-
| || = || 0 ∨ (¬''x'' ∧ ''x''<sub>n</sub>) || by assumption
|-
| || = || (''x'' ∧ ¬''x'') ∨ (¬''x'' ∧ ''x''<sub>n</sub>) || by '''Cpl<sub>2</sub>'''
|-
| || = || (¬''x'' ∧ ''x'') ∨ (¬''x'' ∧ ''x''<sub>n</sub>) || by '''Cmm<sub>2</sub>'''
|-
| || = || ¬''x'' ∧ (''x'' ∨ ''x''<sub>n</sub>) || by '''Dst<sub>2</sub>'''
|-
| || = || ¬''x'' ∧ 1 || by assumption
|-
| || = || ¬''x'' || by '''Idn<sub>2</sub>'''
|}
|- valign="top"
| colspan="2" |
{| align="left" class="collapsible collapsed" style="text-align:left"
! '''DNg''' !! !! ¬¬''x'' = ''x''
|-
| Proof: || || ¬''x'' ∨ ''x'' = ''x'' ∨ ¬''x'' = 1 || by '''Cmm<sub>1</sub>''', '''Cpl<sub>1</sub>'''
|-
| || and || ¬''x'' ∧ ''x'' = ''x'' ∧ ¬''x'' = 0 || by '''Cmm<sub>2</sub>''', '''Cpl<sub>2</sub>'''
|-
| || hence || ''x'' = ¬¬''x'' || by '''UNg'''
|}
|- valign="top"
|
{| align="left" class="collapsible collapsed" style="text-align:left"
! '''A<sub>1</sub>''' !! !! ''x'' ∨ (¬''x'' ∨ ''y'') = 1
|-
| Proof: || || ''x'' ∨ (¬''x'' ∨ ''y'')
|-
| || = || (''x'' ∨ (¬''x'' ∨ ''y'')) ∧ 1 || by '''Idn<sub>2</sub>'''
|-
| || = || 1 ∧ (''x'' ∨ (¬''x'' ∨ ''y'')) || by '''Cmm<sub>2</sub>'''
|-
| || = || (''x'' ∨ ¬''x'') ∧ (''x'' ∨ (¬''x'' ∨ ''y'')) || by '''Cpl<sub>1</sub>'''
|-
| || = || ''x'' ∨ (¬''x'' ∧ (¬''x'' ∨ ''y'')) || by '''Dst<sub>1</sub>'''
|-
| || = || ''x'' ∨ ¬''x'' || by '''Abs<sub>2</sub>'''
|-
| || = || 1 || by '''Cpl<sub>1</sub>'''
|}
| '''A<sub>2</sub>''' [dual] ''x'' ∧ (¬''x'' ∧ ''y'') = 0
|- valign="top"
|
{| align="left" class="collapsible collapsed" style="text-align:left"
! '''B<sub>1</sub>''' !! !! (''x'' ∨ ''y'') ∨ (¬''x'' ∧ ¬''y'') = 1
|-
| Proof: || || (''x'' ∨ ''y'') ∨ (¬''x'' ∧ ¬''y'')
|-
| || = || ((''x'' ∨ ''y'') ∨ ¬''x'') ∧ ((''x'' ∨ ''y'') ∨ ¬''y'') || by '''Dst<sub>1</sub>'''
|-
| || = || (¬''x'' ∨ (''x'' ∨ ''y'')) ∧ (¬''y'' ∨ (''y'' ∨ ''x'')) || by '''Cmm<sub>1</sub>'''
|-
| || = || (¬''x'' ∨ (¬¬''x'' ∨ ''y'')) ∧ (¬''y'' ∨ (¬¬''y'' ∨ ''x'')) || by '''DNg'''
|-
| || = || 1 ∧ 1 || by '''A<sub>1</sub>'''
|-
| || = || 1 || by '''Idn<sub>2</sub>'''
|}
| '''B<sub>2</sub>''' [dual] (''x'' ∧ ''y'') ∧ (¬''x'' ∨ ¬''y'') = 0
|- valign="top"
|
{| align="left" class="collapsible collapsed" style="text-align:left"
! '''C<sub>1</sub>''' !! !! (''x'' ∨ ''y'') ∧ (¬''x'' ∧ ¬''y'') = 0
|-
| Proof: || || (''x'' ∨ ''y'') ∧ (¬''x'' ∧ ¬''y'')
|-
| || = || (¬''x'' ∧ ¬''y'') ∧ (''x'' ∨ ''y'') || by '''Cmm<sub>2</sub>'''
|-
| || = || ((¬''x'' ∧ ¬''y'') ∧ ''x'') ∨ ((¬''x'' ∧ ¬''y'') ∧ ''y'') || by '''Dst<sub>2</sub>'''
|-
| || = || (''x'' ∧ (¬''x'' ∧ ¬''y'')) ∨ (''y'' ∧ (¬''y'' ∧ ¬''x'')) || by '''Cmm<sub>2</sub>'''
|-
| || = || 0 ∨ 0 || by '''A<sub>2</sub>'''
|-
| || = || 0 || by '''Idn<sub>1</sub>'''
|}
| '''C<sub>2</sub>''' [dual] (''x'' ∧ ''y'') ∨ (¬''x'' ∨ ¬''y'') = 1
|- valign="top"
|
{| align="left" class="collapsible collapsed" style="text-align:left"
! '''DMg<sub>1</sub>''' !! !! ¬(''x'' ∨ ''y'') = ¬''x'' ∧ ¬''y''
|-
| Proof: || || by '''B<sub>1</sub>''', '''C<sub>1</sub>''', and '''UNg'''
|}
| '''DMg<sub>2</sub>''' [dual] ¬(''x'' ∧ ''y'') = ¬''x'' ∨ ¬''y''
|- valign="top"
|
{| align="left" class="collapsible collapsed" style="text-align:left"
! '''D<sub>1</sub>''' !! !! (''x''∨(''y''∨''z'')) ∨ ¬''x'' = 1
|-
| Proof: || || (''x'' ∨ (''y'' ∨ ''z'')) ∨ ¬''x''
|-
| || = || ¬''x'' ∨ (''x'' ∨ (''y'' ∨ ''z'')) || by '''Cmm<sub>1</sub>'''
|-
| || = || ¬''x'' ∨ (¬¬''x'' ∨ (''y'' ∨ ''z'')) || by '''DNg'''
|-
| || = || 1 || by '''A<sub>1</sub>'''
|}
| '''D<sub>2</sub>''' [dual] (''x''∧(''y''∧''z'')) ∧ ¬''x'' = 0
|- valign="top"
|
{| align="left" class="collapsible collapsed" style="text-align:left"
! '''E<sub>1</sub>''' !! !! ''y'' ∧ (''x''∨(''y''∨''z'')) = ''y''
|-
| Proof: || || ''y'' ∧ (''x'' ∨ (''y'' ∨ ''z''))
|-
| || = || (''y'' ∧ ''x'') ∨ (''y'' ∧ (''y'' ∨ ''z'')) || by '''Dst<sub>2</sub>'''
|-
| || = || (''y'' ∧ ''x'') ∨ ''y'' || by '''Abs<sub>2</sub>'''
|-
| || = || ''y'' ∨ (''y'' ∧ ''x'') || by '''Cmm<sub>1</sub>'''
|-
| || = || ''y'' || by '''Abs<sub>1</sub>'''
|}
| '''E<sub>2</sub>''' [dual] ''y'' ∨ (''x''∧(''y''∧''z'')) = ''y''
|- valign="top"
|
{| align="left" class="collapsible collapsed" style="text-align:left"
! '''F<sub>1</sub>''' !! !! (''x''∨(''y''∨''z'')) ∨ ¬''y'' = 1
|-
| Proof: || || (''x'' ∨ (''y'' ∨ ''z'')) ∨ ¬''y''
|-
| || = || ¬''y'' ∨ (''x'' ∨ (''y'' ∨ ''z'')) || by '''Cmm<sub>1</sub>'''
|-
| || = || (¬''y'' ∨ (''x'' ∨ (''y'' ∨ ''z''))) ∧ 1 || by '''Idn<sub>2</sub>'''
|-
| || = || 1 ∧ (¬''y'' ∨ (''x'' ∨ (''y'' ∨ ''z''))) || by '''Cmm<sub>2</sub>'''
|-
| || = || (''y'' ∨ ¬''y'') ∧ (¬''y'' ∨ (''x'' ∨ (''y'' ∨ ''z''))) || by '''Cpl<sub>1</sub>'''
|-
| || = || (¬''y'' ∨ ''y'') ∧ (¬''y'' ∨ (''x'' ∨ (''y'' ∨ ''z''))) || by '''Cmm<sub>1</sub>'''
|-
| || = || ¬''y'' ∨ (''y'' ∧ (''x'' ∨ (''y'' ∨ ''z''))) || by '''Dst<sub>1</sub>'''
|-
| || = || ¬''y'' ∨ ''y'' || by '''E<sub>1</sub>'''
|-
| || = || ''y'' ∨ ¬''y'' || by '''Cmm<sub>1</sub>'''
|-
| || = || 1 || by '''Cpl<sub>1</sub>'''
|}
| '''F<sub>2</sub>''' [dual] (''x''∧(''y''∧''z'')) ∧ ¬''y'' = 0
|- valign="top"
|
{| align="left" class="collapsible collapsed" style="text-align:left"
! '''G<sub>1</sub>''' !! !! (''x''∨(''y''∨''z'')) ∨ ¬''z'' = 1
|-
| Proof: || || (''x'' ∨ (''y'' ∨ ''z'')) ∨ ¬''z''
|-
| || = || (''x'' ∨ (''z'' ∨ ''y'')) ∨ ¬''z'' || by '''Cmm<sub>1</sub>'''
|-
| || = || 1 || by '''F<sub>1</sub>'''
|}
| '''G<sub>2</sub>''' [dual] (''x''∧(''y''∧''z'')) ∧ ¬''z'' = 0
|- valign="top"
|
{| align="left" class="collapsible collapsed" style="text-align:left"
! '''H<sub>1</sub>''' !! !! ¬((''x''∨''y'')∨''z'') ∧ ''x'' = 0
|-
| Proof: || || ¬((''x'' ∨ ''y'') ∨ ''z'') ∧ ''x''
|-
| || = || (¬(''x'' ∨ ''y'') ∧ ¬''z'') ∧ ''x'' || by '''DMg<sub>1</sub>'''
|-
| || = || ((¬''x'' ∧ ¬''y'') ∧ ¬''z'') ∧ ''x'' || by '''DMg<sub>1</sub>'''
|-
| || = || ''x'' ∧ ((¬''x'' ∧ ¬''y'') ∧ ¬''z'') || by '''Cmm<sub>2</sub>'''
|-
| || = || (''x'' ∧ ((¬''x'' ∧ ¬''y'') ∧ ¬''z'')) ∨ 0 || by '''Idn<sub>1</sub>'''
|-
| || = || 0 ∨ (''x'' ∧ ((¬''x'' ∧ ¬''y'') ∧ ¬''z'')) || by '''Cmm<sub>1</sub>'''
|-
| || = || (''x'' ∧ ¬''x'') ∨ (''x'' ∧ ((¬''x'' ∧ ¬''y'') ∧ ¬''z'')) || by '''Cpl<sub>2</sub>'''
|-
| || = || ''x'' ∧ (¬''x'' ∨ ((¬''x'' ∧ ¬''y'') ∧ ¬''z'')) || by '''Dst<sub>2</sub>'''
|-
| || = || ''x'' ∧ (¬''x'' ∨ (¬''z'' ∧ (¬''x'' ∧ ¬''y''))) || by '''Cmm<sub>2</sub>'''
|-
| || = || ''x'' ∧ ¬''x'' || by '''E<sub>2</sub>'''
|-
| || = || 0 || by '''Cpl<sub>2</sub>'''
|}
| '''H<sub>2</sub>''' [dual] ¬((''x''∧''y'')∧''z'') ∨ ''x'' = 1
|- valign="top"
|
{| align="left" class="collapsible collapsed" style="text-align:left"
! '''I<sub>1</sub>''' !! !! ¬((''x''∨''y'')∨''z'') ∧ ''y'' = 0
|-
| Proof: || || ¬((''x'' ∨ ''y'') ∨ ''z'') ∧ ''y''
|-
| || = || ¬((''y'' ∨ ''x'') ∨ ''z'') ∧ ''y'' || by '''Cmm<sub>1</sub>'''
|-
| || = || 0 || by '''H<sub>1</sub>'''
|}
| '''I<sub>2</sub>''' [dual] ¬((''x''∧''y'')∧''z'') ∨ ''y'' = 1
|- valign="top"
|
{| align="left" class="collapsible collapsed" style="text-align:left"
! '''J<sub>1</sub>''' !! !! ¬((''x''∨''y'')∨''z'') ∧ ''z'' = 0
|-
| Proof: || || ¬((''x'' ∨ ''y'') ∨ ''z'') ∧ ''z''
|-
| || = || (¬(''x'' ∨ ''y'') ∧ ¬''z'') ∧ ''z'' || by '''DMg<sub>1</sub>'''
|-
| || = || ''z'' ∧ (¬(''x'' ∨ ''y'') ∧ ¬''z'') || by '''Cmm<sub>2</sub>'''
|-
| || = || ''z'' ∧ ( ¬''z'' ∧ ¬(''x'' ∨ ''y'')) || by '''Cmm<sub>2</sub>'''
|-
| || = || 0 || by '''A<sub>2</sub>'''
|}
| '''J<sub>2</sub>''' [dual] ¬((''x''∧''y'')∧''z'') ∨ ''z'' = 1
|- valign="top"
|
{| align="left" class="collapsible collapsed" style="text-align:left"
! '''K<sub>1</sub>''' !! !! (''x'' ∨ (''y'' ∨ ''z'')) ∨ ¬((''x'' ∨ ''y'') ∨ ''z'') = 1
|-
| Proof: || || (''x''∨(''y''∨''z'')) ∨ ¬((''x'' ∨ ''y'') ∨ ''z'')
|-
| || = || (''x''∨(''y''∨''z'')) ∨ (¬(''x'' ∨ ''y'') ∧ ¬''z'') || by '''DMg<sub>1</sub>'''
|-
| || = || (''x''∨(''y''∨''z'')) ∨ ((¬''x'' ∧ ¬''y'') ∧ ¬''z'') || by '''DMg<sub>1</sub>'''
|-
| || = || ((''x''∨(''y''∨''z'')) ∨ (¬''x'' ∧ ¬''y'')) ∧ ((''x''∨(''y''∨''z'')) ∨ ¬''z'')|| by '''Dst<sub>1</sub>'''
|-
| || = || (((''x''∨(''y''∨''z'')) ∨ ¬''x'') ∧ ((''x''∨(''y''∨''z'')) ∨ ¬''y'')) ∧ ((''x''∨(''y''∨''z'')) ∨ ¬''z'')|| by '''Dst<sub>1</sub>'''
|-
| || = || (1 ∧ 1) ∧ 1 || by '''D<sub>1</sub>''','''F<sub>1</sub>''','''G<sub>1</sub>'''
|-
| || = || 1 || by '''Idn<sub>2</sub>'''
|}
| '''K<sub>2</sub>''' [dual] (''x'' ∧ (''y'' ∧ ''z'')) ∧ ¬((''x'' ∧ ''y'') ∧ ''z'') = 0
|- valign="top"
|
{| align="left" class="collapsible collapsed" style="text-align:left"
! '''L<sub>1</sub>''' !! !! (''x'' ∨ (''y'' ∨ ''z'')) ∧ ¬((''x'' ∨ ''y'') ∨ ''z'') = 0
|-
| Proof: || || (''x'' ∨ (''y'' ∨ ''z'')) ∧ ¬((''x'' ∨ ''y'') ∨ ''z'')
|-
| || = || ¬((''x''∨''y'')∨''z'') ∧ (''x'' ∨ (''y'' ∨ ''z'')) || by '''Cmm<sub>2</sub>'''
|-
| || = || (¬((''x''∨''y'')∨''z'') ∧ ''x'') ∨ (¬((''x''∨''y'')∨''z'') ∧ (''y'' ∨ ''z'')) || by '''Dst<sub>2</sub>'''
|-
| || = || (¬((''x''∨''y'')∨''z'') ∧ ''x'') ∨ ((¬((''x''∨''y'')∨''z'') ∧ ''y'') ∨ (¬((''x''∨''y'')∨''z'') ∧ ''z'')) || by '''Dst<sub>2</sub>'''
|-
| || = || 0 ∨ (0 ∨ 0) || by '''H<sub>1</sub>''','''I<sub>1</sub>''','''J<sub>1</sub>'''
|-
| || = || 0 || by '''Idn<sub>1</sub>'''
|}
| '''L<sub>2</sub>''' [dual] (''x'' ∧ (''y'' ∧ ''z'')) ∨ ¬((''x'' ∧ ''y'') ∧ ''z'') = 1
|- valign="top"
|
{| align="left" class="collapsible collapsed" style="text-align:left"
! '''Ass<sub>1</sub>''' !! !! ''x'' ∨ (''y'' ∨ ''z'') = (''x'' ∨ ''y'') ∨ ''z''
|-
| Proof: || || by '''K<sub>1</sub>''', '''L<sub>1</sub>''', '''UNg''', '''DNg'''
|}
| '''Ass<sub>2</sub>''' [dual] ''x'' ∧ (''y'' ∧ ''z'') = (''x'' ∧ ''y'') ∧ ''z''
|-
| colspan="2" |
{| align="left" class="collapsible" style="text-align:left"
|-
! colspan="2" | Abbreviations
|-
| '''UId''' || Unique Identity
|-
| '''Idm''' || [[Idempotence]]
|-
| '''Bnd''' || [[Bounded lattice|Boundaries]]
|-
| '''Abs''' || [[Absorption law]]
|-
| '''UNg''' || Unique Negation
|-
| '''DNg''' || [[Double negation]]
|-
| '''DMg''' || [[De Morgan's Law]]
|-
| '''Ass''' || [[Associativity]]
|}
|}
{| align="right" class="wikitable collapsible collapsed" style="text-align:left"
! colspan="4"| '''Huntington 1904 Boolean algebra axioms'''
|- valign="top"
| '''Idn<sub>1</sub>''' || ''x'' ∨ 0 = ''x''
| '''Idn<sub>2</sub>''' || ''x'' ∧ 1 = ''x''
|- valign="top"
| '''Cmm<sub>1</sub>''' || ''x'' ∨ ''y'' = ''y'' ∨ ''x''
| '''Cmm<sub>2</sub>''' || ''x'' ∧ ''y'' = ''y'' ∧ ''x''
|- valign="top"
| '''Dst<sub>1</sub>''' || ''x'' ∨ (''y''∧''z'') = (''x''∨''y'') ∧ (''x''∨''z'')
| '''Dst<sub>2</sub>''' || ''x'' ∧ (''y''∨''z'') = (''x''∧''y'') ∨ (''x''∧''z'')
|- valign="top"
| '''Cpl<sub>1</sub>''' || ''x'' ∨ ¬''x'' = 1
| '''Cpl<sub>2</sub>''' || ''x'' ∧ ¬''x'' = 0
|-
| colspan="4" |
{| align="left" class="collapsible" style="text-align:left"
|-
! colspan="2" | Abbreviations
|-
| '''Idn''' || [[Identity element|Identity]]
|-
| '''Cmm''' || [[Commutativity]]
|-
| '''Dst''' || [[Distributivity]]
|-
| '''Cpl''' || [[Complemented lattice|Complements]]
|}
|}
The first axiomatization of Boolean lattices/algebras in general was given by the English philosopher and mathematician [[Alfred North Whitehead]] in 1898.{{sfn|Padmanabhan|Rudeanu|2008|p=[https://books.google.com/books?id=JlXSlpmlSv4C&pg=PA73 73]}}{{sfn|Whitehead|1969|p=37}}
It included the [[#Definition|above axioms]] and additionally {{math|1=''x'' ∨ 1 = 1}} and {{math|1=''x'' ∧ 0 = 0}}.
In 1904, the American mathematician [[Edward V. Huntington]] (1874–1952) gave probably the most parsimonious axiomatization based on {{math|1=∧}}, {{math|1=∨}}, {{math|1=¬}}, even proving the associativity laws (see box).{{sfn|Huntington|1904|pp=292-293}}
He also proved that these axioms are [[Independence (mathematical logic)|independent]] of each other.{{sfn|Huntington|1904|p=296}}
In 1933, Huntington set out the following elegant axiomatization for Boolean algebra.{{sfn|Huntington|1933a}} It requires just one binary operation {{math|1=+}} and a [[unary functional symbol]] {{math|1=''n''}}, to be read as 'complement', which satisfy the following laws:
{{olist
|1= ''Commutativity'': {{math|1=''x'' + ''y'' = ''y'' + ''x''}}.
|2= ''Associativity'': {{math|1=(''x'' + ''y'') + ''z'' = ''x'' + (''y'' + ''z'')}}.
|3= ''Huntington equation'': {{math|1=''n''(''n''(''x'') + ''y'') + ''n''(''n''(''x'') + ''n''(''y'')) = ''x''}}.
}}
[[Herbert Robbins]] immediately asked: If the Huntington equation is replaced with its dual, to wit:
{{olist|start=4
|1= ''Robbins Equation'': {{math|1=''n''(''n''(''x'' + ''y'') + ''n''(''x'' + ''n''(''y''))) = ''x''}},
}}
do (1), (2), and (4) form a basis for Boolean algebra? Calling (1), (2), and (4) a ''Robbins algebra'', the question then becomes: Is every Robbins algebra a Boolean algebra? This question (which came to be known as the [[Robbins conjecture]]) remained open for decades, and became a favorite question of [[Alfred Tarski]] and his students. In 1996, [[William McCune]] at [[Argonne National Laboratory]], building on earlier work by Larry Wos, Steve Winker, and Bob Veroff, answered Robbins's question in the affirmative: Every Robbins algebra is a Boolean algebra. Crucial to McCune's proof was the computer program [[Equational prover|EQP]] he designed. For a simplification of McCune's proof, see Dahn (1998).
Further work has been done for reducing the number of axioms; see [[Minimal axioms for Boolean algebra]].
{{clear}}
== Generalizations ==
{{Algebraic structures|Lattice}}
Removing the requirement of existence of a unit from the axioms of Boolean algebra yields "generalized Boolean algebras". Formally, a [[distributive lattice]] {{math|1=''B''}} is a generalized Boolean lattice, if it has a smallest element {{math|1=0}} and for any elements {{math|1=''a''}} and {{math|1=''b''}} in {{math|1=''B''}} such that {{math|1=''a'' ≤ ''b''}}, there exists an element {{math|1=''x''}} such that {{math|1=''a'' ∧ ''x'' = 0}} and {{math|1=''a'' ∨ ''x'' = ''b''}}. Defining {{math|1=''a'' \ ''b''}} as the unique {{math|1=''x''}} such that {{math|1=(''a'' ∧ ''b'') ∨ ''x'' = ''a''}} and {{math|1=(''a'' ∧ ''b'') ∧ ''x'' = 0}}, we say that the structure {{math|(''B'', ∧, ∨, \, 0)}} is a ''generalized Boolean algebra'', while {{math|(''B'', ∨, 0)}} is a ''generalized Boolean [[semilattice]]''. Generalized Boolean lattices are exactly the [[Ideal (order theory)|ideals]] of Boolean lattices.
A structure that satisfies all axioms for Boolean algebras except the two distributivity axioms is called an [[orthocomplemented lattice]]. Orthocomplemented lattices arise naturally in [[quantum logic]] as lattices of [[closed set|closed]] [[linear subspace]]s for [[separable space|separable]] [[Hilbert space]]s.
== See also ==
{{div col|content=
* [[List of Boolean algebra topics]]
* [[Boolean ___domain]]
* [[Boolean function]]
* [[Boolean logic]]
* [[Boolean ring]]
* [[Boolean-valued function]]
* [[Canonical form (Boolean algebra)]]
* [[Complete Boolean algebra]]
* [[De Morgan's laws]]
* [[Forcing (mathematics)]]
* [[Free Boolean algebra]]
* [[Heyting algebra]]
* [[Hypercube graph]]
* [[Karnaugh map]]
* ''[[
* [[Logic gate]]
* [[Logical graph]]
* [[Logical matrix]]
* [[Propositional logic]]
* [[Quine–McCluskey algorithm]]
* [[Two-element Boolean algebra]]
* [[Venn diagram]]
* [[Conditional event algebra]]
}}
==Notes==
{{reflist|group=note}}
== References ==
{{reflist|30em}}
===Works cited===
*{{cite book
|first1=B.A. |last1=Davey |author2link = Hilary Priestley|first2=H.A. |last2=Priestley | title=Introduction to Lattices and Order | title-link= Introduction to Lattices and Order
| year=1990
| publisher=Cambridge University Press
| series=Cambridge Mathematical Textbooks}}
*{{citation|title=Basic Algebra: Groups, Rings, and Fields|first=Paul M.|last=Cohn|publisher= Springer |year=2003 |isbn=9781852335878 |pages=51, 70–81 |author-link=Paul Cohn}}
*{{citation
| last1 = Givant
| first1 = Steven
| first2 = Paul
| last2 = Halmos
|author2link = Paul Halmos
| year = 2009
| title = Introduction to Boolean Algebras
| series = [[Undergraduate Texts in Mathematics]] | publisher = [[Springer Science+Business Media|Springer]]
| isbn = 978-0-387-40293-2}}.
*{{citation|title=Boolean Algebra|first=R. L.|last=Goodstein|authorlink = Reuben Goodstein|publisher=Courier Dover Publications|year=2012|isbn=9780486154978|chapter=Chapter 2: The self-dual system of axioms|pages=21ff|chapter-url=https://books.google.com/books?id=0fxW2KiyxWwC&pg=PA21}}
*{{cite journal
| last1=Hsiang
| first1=Jieh
| title=Refutational Theorem Proving Using Term Rewriting Systems
| journal= [[Artificial Intelligence (journal)|Artificial Intelligence]]
| year=1985
| volume=25
| issue=3
| pages=255–300
| url=https://www.researchgate.net/publication/223327412
| doi=10.1016/0004-3702(85)90074-8
}}
*{{cite journal
| author-link=Edward V. Huntington
| first1=Edward V.
| last1=Huntington
| title=Sets of Independent Postulates for the Algebra of Logic
| journal=[[Transactions of the American Mathematical Society]]
| year=1904
| volume=5
| issue=3
| pages=288–309
| jstor=1986459
| doi=10.1090/s0002-9947-1904-1500675-4| url=https://zenodo.org/record/1431563
| doi-access=free
}}
*{{citation
| last1 = Padmanabhan
| first1 = Ranganathan
| last2 = Rudeanu
| first2 = Sergiu
| year = 2008
| title = Axioms for lattices and boolean algebras
| publisher = World Scientific
| isbn = 978-981-283-454-6}}.
*{{cite journal
| author-link=Marshall H. Stone
| first1=Marshall H.
| last1=Stone
| title=The Theory of Representations for Boolean Algebra
| journal=[[Transactions of the American Mathematical Society]]
| year=1936
| volume=40
| pages=37–111
| doi=10.1090/s0002-9947-1936-1501865-8| doi-access=free
}}
*{{cite book |author-link=A.N. Whitehead |first1=A.N. |last1=Whitehead |title=A Treatise on Universal Algebra |year=1969 |publisher=Cambridge University Press |isbn=978-1-4297-0032-0 |orig-year=1898}}
=== General references ===
{{more footnotes needed|date=July 2013}}
*{{citation
| last1 = Brown
| first1 = Stephen
| last2 = Vranesic
| first2 = Zvonko
| year = 2002
| title = Fundamentals of Digital Logic with VHDL Design
| edition = 2nd
| publisher = [[McGraw-Hill|McGraw–Hill]]
| isbn = 978-0-07-249938-4}}. See Section 2.5.
*{{cite journal
|first1=A. |last1=Boudet |first2=J.P. |last2=Jouannaud |first3=M. |last3=Schmidt-Schauß | title=Unification in Boolean Rings and Abelian Groups
| journal=[[Journal of Symbolic Computation]]
| year=1989
| volume=8
|issue=5 | pages=449–477
| doi=10.1016/s0747-7171(89)80054-9|doi-access=free }}
*{{citation
| last1 = Cori
| first1 = Rene
| last2 = Lascar
| first2 = Daniel
| year = 2000
| title = Mathematical Logic: A Course with Exercises
| publisher = [[Oxford University Press]]
| isbn = 978-0-19-850048-3}}. See Chapter 2.
*{{citation
| last = Dahn
| first = B. I.
| year = 1998
| title = Robbins Algebras are Boolean: A Revision of McCune's Computer-Generated Solution of the Robbins Problem
| journal = [[Journal of Algebra]]
| volume = 208
| pages = 526–532
| doi = 10.1006/jabr.1998.7467
| issue = 2| doi-access = free
}}.
*{{citation |author-link=Paul Halmos |last=Halmos |first=Paul |year=1963 |title=Lectures on Boolean Algebras |publisher=Van Nostrand}}.
*{{citation
| author-link1 = Paul Halmos
| last1 = Halmos
| first1 = Paul
| first2 = Steven
| last2 = Givant
| year = 1998
| title = Logic as Algebra
| series = Dolciani Mathematical Expositions
| volume = 21
| publisher = [[Mathematical Association of America]]
| isbn = 978-0-88385-327-6
| url-access = registration
| url = https://archive.org/details/logicasalgebra0000halm
}}.
*{{citation
| author-link = Edward Vermilye Huntington
| last = Huntington
| first = E. V.
| year = 1933a
| title = New sets of independent postulates for the algebra of logic
| journal = [[Transactions of the American Mathematical Society]]
| volume = 35
| pages = 274–304
| doi = 10.2307/1989325
| issue = 1
| publisher = American Mathematical Society
| url = https://www.ams.org/journals/tran/1933-035-01/S0002-9947-1933-1501684-X/S0002-9947-1933-1501684-X.pdf
| jstor = 1989325}}.
*{{citation
| author-link = Edward Vermilye Huntington
| last = Huntington
| first = E. V.
| year = 1933b
| title = Boolean algebra: A correction
| journal = [[Transactions of the American Mathematical Society]]
| volume = 35
| pages = 557–558
| doi = 10.2307/1989783
| issue = 2
| jstor = 1989783}}
*{{citation
| last = Mendelson
| first = Elliott
| year = 1970
| title = Boolean Algebra and Switching Circuits
| series = Schaum's Outline Series in Mathematics
| publisher = [[McGraw-Hill|McGraw–Hill]]
| isbn = 978-0-07-041460-0
| url-access = registration
| url = https://archive.org/details/schaumsoutlineof00mend
}}
*{{citation
| editor1-last = Monk
| editor1-first = J. Donald
| editor2-first = R.
| editor2-last = Bonnet
| year = 1989
| title = Handbook of Boolean Algebras
| publisher = [[Elsevier|North-Holland]]
| isbn = 978-0-444-87291-3
| url-access = registration
| url = https://archive.org/details/handbookofboolea0000unse
}}. In 3 volumes. (Vol.1:{{ISBN|978-0-444-70261-6}}, Vol.2:{{ISBN|978-0-444-87152-7}}, Vol.3:{{ISBN|978-0-444-87153-4}})
*{{citation
| author-link = Roman Sikorski
| last = Sikorski
| first = Roman
| year = 1966
| title = Boolean Algebras
| series = Ergebnisse der Mathematik und ihrer Grenzgebiete
| publisher = [[Springer Verlag]]
| ref = Sikorski1966BooleanAlgebras
}}.
*{{citation
| last = Stoll
| first = R. R.
| year = 1979|orig-year=1963
| title = Set Theory and Logic
| publisher = W. H. Freeman
| isbn = 978-0-486-63829-4}}. Reprinted by [[Dover Publications]], 1979.
==External links==
{{external links|date=November 2020}}
* {{springer|title=Boolean algebra|id=p/b016920}}
* [[Stanford Encyclopedia of Philosophy]]: "[http://plato.stanford.edu/entries/boolalg-math/ The Mathematics of Boolean Algebra]", by J. Donald Monk.
* McCune W., 1997. ''[http://www.cs.unm.edu/~mccune/papers/robbins/ Robbins Algebras Are Boolean]'' JAR 19(3), 263–276
* [http://demonstrations.wolfram.com/BooleanAlgebra/ "Boolean Algebra"] by [[Eric W. Weisstein]], [[Wolfram Demonstrations Project]], 2007.
* Burris, Stanley N.; Sankappanavar, H. P., 1981. ''[http://www.thoralf.uwaterloo.ca/htdocs/ualg.html A Course in Universal Algebra.]'' Springer-Verlag. {{ISBN|3-540-90578-2}}.
* {{MathWorld | urlname=BooleanAlgebra | title=Boolean Algebra}}
{{Order theory}}
{{DEFAULTSORT:Boolean Algebra (Structure)}}
[[Category:Boolean algebra| ]]
[[Category:Algebraic structures]]
[[Category:Ockham algebras]]
|