Content deleted Content added
No edit summary |
AdaHephais (talk | contribs) Add internal link Tags: Visual edit Mobile edit Mobile web edit Advanced mobile edit |
||
(107 intermediate revisions by 46 users not shown) | |||
Line 1:
In mathematical [[optimization (mathematics)|optimization theory]], the '''linear complementarity problem (LCP)''' arises frequently in [[computational mechanics]] and encompasses the well-known [[quadratic programming]] as a special case. It was proposed by Cottle and [[George Dantzig|Dantzig]] in 1968.{{sfnp|Murty|1988}}{{sfnp|Cottle|Pang|Stone|1992}}{{sfnp|Cottle|Dantzig|1968}}
== Formulation ==
Given a [[Matrix (mathematics)|real matrix]]
* <math>
* <math>\mathbf{w} = \mathbf{Mz} + \mathbf{q} </math>▼
* <math>z^Tw = 0</math> or equivalently <math>\sum\nolimits_i w_i z_i = 0.</math> This is the [[Complementarity theory|complementarity]] condition, since it implies that, for all <math>i</math>, at most one of <math>w_i</math> and <math>z_i</math> can be positive.
▲* <math>\mathbf{w} \ge 0, \mathbf{z} \ge 0</math> (that is, each component of these two vectors is non-negative)
A sufficient condition for existence and uniqueness of a solution to this problem is that
The vector
* <math>
* <math>
* <math>
==
: <math>f(z) = z^T(Mz+q)</math>
▲According to the [[Karush–Kuhn–Tucker conditions]], finding a solution to the linear complementarity problem is equivalent to minimizing the quadratic function
subject to the constraints
: <math>
: <math>
If
Also, a quadratic
is the same as solving the LCP with
This is because the [[Karush–Kuhn–Tucker]] conditions of the QP problem can be written as:
:<math>\begin{cases}
v = Q x - A^T {\lambda} + c \\
s = A x - b \\
x, {\lambda}, v, s \geqslant 0 \\
x^{T} v+ {\lambda}^T s = 0
\end{cases}</math>
with ''v'' the Lagrange multipliers on the non-negativity constraints, ''λ'' the <!-- Lagrange -->multipliers on the inequality constraints, and ''s'' the slack variables for the inequality constraints. The fourth condition derives from the complementarity of each group of variables {{math|(''x'', ''s'')}} with its set of KKT vectors (optimal Lagrange multipliers) being {{math|(''v'', ''λ'')}}. In that case,
: <math>z = \begin{bmatrix} x \\ \lambda \end{bmatrix}, \qquad w = \begin{bmatrix} v \\ s \end{bmatrix}</math>
If the non-negativity constraint on the ''x'' is relaxed, the dimensionality of the LCP problem can be reduced to the number of the inequalities, as long as ''Q'' is non-singular (which is guaranteed if it is [[Positive-definite matrix|positive definite]]). The multipliers ''v'' are no longer present, and the first KKT conditions can be rewritten as:
: <math>Q x = A^{T} {\lambda} - c</math>
or:
: <math> x = Q^{-1}(A^{T} {\lambda} - c)</math>
pre-multiplying the two sides by ''A'' and subtracting ''b'' we obtain:
: <math> A x - b = A Q^{-1}(A^{T} {\lambda} - c) -b \,</math>
The left side, due to the second KKT condition, is ''s''. Substituting and reordering:
: <math> s = (A Q^{-1} A^{T}) {\lambda} + (- A Q^{-1} c - b )\,</math>
Calling now
:<math>\begin{align}
M &:= (A Q^{-1} A^{T}) \\
q &:= (- A Q^{-1} c - b)
\end{align}</math>
we have an LCP, due to the relation of complementarity between the slack variables ''s'' and their Lagrange multipliers ''λ''. Once we solve it, we may obtain the value of ''x'' from ''λ'' through the first KKT condition.
Finally, it is also possible to handle additional equality constraints:
: <math>A_{eq}x = b_{eq}</math>
This introduces a vector of Lagrange multipliers ''μ'', with the same dimension as <math>b_{eq}</math>.
It is easy to verify that the ''M'' and ''Q'' for the LCP system <math> s = M {\lambda} + Q</math> are now expressed as:
:<math>\begin{align}
M &:= \begin{bmatrix} A & 0 \end{bmatrix} \begin{bmatrix} Q & A_{eq}^{T} \\ -A_{eq} & 0 \end{bmatrix}^{-1} \begin{bmatrix} A^T \\ 0 \end{bmatrix} \\
q &:= - \begin{bmatrix} A & 0 \end{bmatrix} \begin{bmatrix} Q & A_{eq}^{T} \\ -A_{eq} & 0 \end{bmatrix}^{-1} \begin{bmatrix} c \\ b_{eq} \end{bmatrix} - b
\end{align}</math>
From ''λ'' we can now recover the values of both ''x'' and the Lagrange multiplier of equalities ''μ'':
:<math>\begin{bmatrix} x \\ \mu \end{bmatrix} = \begin{bmatrix} Q & A_{eq}^{T} \\ -A_{eq} & 0 \end{bmatrix}^{-1} \begin{bmatrix} A^T \lambda - c \\ -b_{eq} \end{bmatrix}</math>
In fact, most QP solvers work on the LCP formulation, including the [[interior point method]], principal / complementarity pivoting, and [[active set]] methods.{{sfnp|Murty|1988}}{{sfnp|Cottle|Pang|Stone|1992}} LCP problems can be solved also by the [[criss-cross algorithm]],{{sfnp|Fukuda|Namiki|1994}}{{sfnp|Fukuda|Terlaky|1997}}{{sfnp|den Hertog|Roos|Terlaky|1993}}{{sfnp|Csizmadia|Illés|2006}} conversely, for linear complementarity problems, the criss-cross algorithm terminates finitely only if the matrix is a sufficient matrix.{{sfnp|den Hertog|Roos|Terlaky|1993}}{{sfnp|Csizmadia|Illés|2006}} A [[sufficient matrix]] is a generalization both of a [[positive-definite matrix]] and of a [[P-matrix]], whose [[principal minor]]s are each positive.{{sfnp|den Hertog|Roos|Terlaky|1993}}{{sfnp|Csizmadia|Illés|2006}}{{sfnp|Cottle|Pang|Venkateswaran|1989}}
Such LCPs can be solved when they are formulated abstractly using [[oriented matroid|oriented-matroid]] theory.{{sfnp|Todd|1985|}}{{sfnp|Terlaky|Zhang|1993}}{{sfnp|Björner|Las Vergnas|Sturmfels|White|1999}}
== See also ==
*[[Complementarity theory]]
*[[Physics engine]] Impulse/constraint type physics engines for games use this approach.
*[[Contact dynamics]] Contact dynamics with the nonsmooth approach.
*[[Bimatrix game]]s can be reduced to LCP.
==Notes==
{{Reflist|24em}}
== References ==
* {{cite book|last1=Björner|first1=Anders|author-link1=Anders Björner|last2=Las Vergnas|author-link2=Michel Las Vergnas|first2=Michel|last3=Sturmfels|first3=Bernd|author-link3=Bernd Sturmfels|last4=White|first4=Neil |author-link4=Neil White|last5=Ziegler |first5=Günter|author-link5=Günter M. Ziegler |year=1999 |title=Oriented Matroids|chapter=10 Linear programming |publisher=Cambridge University Press|isbn=978-0-521-77750-6 |pages=417–479 |doi=10.1017/CBO9780511586507 |mr=1744046}}
* {{cite book|last=Murty|first=K. G.|title=Linear complementarity, linear and nonlinear programming|series=Sigma Series in Applied Mathematics|volume=3|publisher=Heldermann Verlag|___location=Berlin|year=1988|pages=xlviii+629 pp.|isbn=3-88538-403-5|url=http://ioe.engin.umich.edu/people/fac/books/murty/linear_complementarity_webbook/ }} (Available for download at the website of Professor [http://www-personal.umich.edu/~murty/ Katta G. Murty].) {{MR|949214}}▼
* {{cite journal|last1=Cottle|first1=R. W.|last2=Dantzig|first2=G. B.|author-link2=G. B. Dantzig |title=Complementary pivot theory of mathematical programming |journal=Linear Algebra and Its Applications |volume=1 |pages=103–125 |date=1968|doi=10.1016/0024-3795(68)90052-9|doi-access=free}}
* {{cite book|last1=Cottle|first1=Richard W.|last2=Pang|first2=Jong-Shi|last3=Stone|first3=Richard E. |title=The linear complementarity problem | series=Computer Science and Scientific Computing |publisher=Academic Press, Inc. |___location=Boston, MA|year=1992|pages=xxiv+762 pp
* {{cite journal|last1=Cottle|first1=R. W.|authorlink1=Richard W. Cottle|last2=Pang|first2=J.-S. |last3=Venkateswaran|first3=V.|title=Sufficient matrices and the linear complementarity problem |journal=Linear Algebra and Its Applications|volume=114–115|date=March–April 1989|pages=231–249 |doi=10.1016/0024-3795(89)90463-1|mr=986877|doi-access=}}
* {{cite journal|first1=Zsolt|last1=Csizmadia|first2=Tibor|last2=Illés|title=New criss-cross type algorithms for linear complementarity problems with sufficient matrices|journal=Optimization Methods and Software|volume=21 |year=2006|number=2|pages=247–266 |doi=10.1080/10556780500095009 |s2cid=24418835 |url=http://www.cs.elte.hu/opres/orr/download/ORR03_1.pdf}}
* {{cite journal|last1=Fukuda|first1=Komei|authorlink1=Komei Fukuda|last2=Namiki|first2=Makoto|title=On extremal behaviors of Murty's least index method|journal=Mathematical Programming|date=March 1994|pages=365–370|volume=64|issue=1|doi=10.1007/BF01582581|mr=1286455|s2cid=21476636}}
* {{cite journal|first1=Komei|last1=Fukuda <!-- authorlink1=Komei Fukuda -->|first2=Tamás|last2=Terlaky <!-- authorlink2=Tamás Terlaky -->|title=Criss-cross methods: A fresh view on pivot algorithms |journal=Mathematical Programming, Series B|volume=79|issue=1–3| pages=369–395|series=Papers from the 16th International Symposium on Mathematical Programming held in Lausanne, 1997 |editor=Thomas M. Liebling |editor2=Dominique de Werra |year=1997 |doi=10.1007/BF02614325|mr=1464775 |citeseerx=10.1.1.36.9373 |s2cid=2794181 |id=[http://www.cas.mcmaster.ca/~terlaky/files/crisscross.ps Postscript preprint]}}
* {{cite journal|first1=D.|last1=den Hertog|first2=C.|last2=Roos|first3=T.|last3=Terlaky|title=The linear complementarity problem, sufficient matrices, and the criss-cross method| journal=Linear Algebra and Its Applications |volume=187|date=1 July 1993|pages=1–14|url=http://core.ac.uk/download/pdf/6714737.pdf|doi=10.1016/0024-3795(93)90124-7|doi-access=free}}
* {{cite journal|last1=Murty|first1=Katta G.|title=On the number of solutions to the complementarity problem and spanning properties of complementary cones|journal=Linear Algebra and Its Applications |date=January 1972 |volume=5 |issue=1|pages=65–108 |doi=10.1016/0024-3795(72)90019-5 |hdl=2027.42/34188 |url=https://deepblue.lib.umich.edu/bitstream/2027.42/34188/1/0000477.pdf|hdl-access=free }}
▲* {{cite book|last=Murty|first=K. G.|title=Linear complementarity, linear and nonlinear programming |series=Sigma Series in Applied Mathematics|volume=3|publisher=Heldermann Verlag|___location=Berlin|year=1988
* {{cite book|last=Taylor|first=Joshua Adam|year=2015|title=Convex Optimization of Power Systems |publisher=Cambridge University Press |isbn=9781107076877 |url=https://books.google.com/books?id=JBdoBgAAQBAJ}}
* {{cite journal|last1=Terlaky|first1=Tamás <!-- authorlink1=Tamás Terlaky -->|last2=Zhang|first2=Shu Zhong |title=Pivot rules for linear programming: A Survey on recent theoretical developments|series=Degeneracy in optimization problems|journal=Annals of Operations Research|volume=46–47|year=1993|issue=1|pages=203–233 |doi=10.1007/BF02096264|mr=1260019|citeseerx=10.1.1.36.7658 |s2cid=6058077|issn=0254-5330}}
*{{cite journal|last=Todd|first=Michael J.|author-link=Michael J. Todd (mathematician)|title=Linear and quadratic programming in oriented matroids|journal=Journal of Combinatorial Theory|series=Series B |volume=39 |year=1985 |issue=2|pages=105–133|mr=811116|doi=10.1016/0095-8956(85)90042-5 |doi-access=free}}
==Further reading==
*{{cite web | url=http://www.utdallas.edu/~chandra/documents/6311/bimatrix.pdf | title=Bimatrix games | accessdate=18 December 2015 | author=R. Chandrasekaran | pages=5–7}}
▲* {{cite book|last1=Cottle|first1=Richard W.|last2=Pang|first2=Jong-Shi|last3=Stone|first3=Richard E.|title=The linear complementarity problem | series=Computer Science and Scientific Computing|publisher=Academic Press, Inc.|___location=Boston, MA|year=1992|pages=xxiv+762 pp.|isbn=0-12-192350-9}} {{MR|1150683}}
== External links ==
* [https://web.archive.org/web/20041029022008/http://www.american.edu/econ/gaussres/optimize/quadprog.src LCPSolve] — A simple procedure in GAUSS to solve a linear complementarity problem
* [[Siconos]]/Numerics open-source GPL implementation in C of Lemke's algorithm and other methods to solve LCPs and MLCPs
{{Mathematical programming}}
Line 56 ⟶ 129:
[[Category:Linear algebra]]
[[Category:Mathematical optimization]]
|