Electromagnetic tensor: Difference between revisions

Content deleted Content added
Mathbot (talk | contribs)
Robot-assisted spelling. See User:Mathbot/Logged misspellings for changes.
m One need not be involved. (diffedit)
 
(387 intermediate revisions by more than 100 users not shown)
Line 1:
{{Short description|Mathematical object that describes the electromagnetic field in spacetime}}
{{cleanup-date|October 2005}}
{{for|an explanation and meanings of the index notation in this article|Einstein notation|antisymmetric tensor}}
{{distinguish-redirect|Electromagnetic field strength|Electric field strength|Magnetic field strength}}
{{electromagnetism|expanded=Covariance}}
 
TheIn [[electromagnetism]], the '''electromagnetic tensor''' or '''electromagnetic field tensor''' (sometimes called the '''field strength tensor''' or, '''Faraday tensor''' or '''Maxwell bivector''') is a mathematical object that describes the [[electromagnetic field]] in spacetime. The field tensor was developed by [[Arnold Sommerfeld]] after the four-dimensional [[tensor]] formulation of a[[special physicalrelativity]] systemwas inintroduced Maxwell'sby [[Hermann Minkowski]].<ref>Darrigol, O. (2005). The genesis of the theory of relativity. In Einstein, 1905–2005: Poincaré Seminar 2005 (pp. 1-31). Basel: Birkhäuser Basel</ref>{{rp|22}} The tensor allows related physical laws to be written concisely, and allows for the [[electromagnetismquantization of the electromagnetic field]] by the Lagrangian formulation described [[Electromagnetic tensor#Quantum electrodynamics and field theory|below]].
 
==DetailsDefinition==
The electromagnetic tensor <math>\, F_{ab}</math> is commonly written as a matrix:
 
The electromagnetic tensor, conventionally labelled ''F'', is defined as the [[Exterior derivative#Exterior derivative of a k-form|exterior derivative]] of the [[electromagnetic four-potential]], ''A'', a differential 1-form:<ref>{{cite book |author1=J. A. Wheeler |author2=C. Misner |author3=K. S. Thorne | title=[[Gravitation (book)|Gravitation]]| publisher=W.H. Freeman & Co| year=1973 | isbn=0-7167-0344-0}}</ref><ref>{{cite book | author=D. J. Griffiths| title=Introduction to Electrodynamics |edition=3rd| publisher=Pearson Education, Dorling Kindersley| year=2007 | isbn=978-81-7758-293-2}}</ref>
:<math>
F_{ab} = \begin{bmatrix}
0 & E_x/c & E_y/c & E_z/c \\
-E_x/c & 0 & -B_z & B_y \\
-E_y/c & B_z & 0 & -B_x \\
-E_z/c & -B_y & B_x & 0
\end{bmatrix}
</math>
 
:<math>F \ \stackrel{\mathrm{def}}{=}\ \mathrm{d}A.</math>
where
:''E'' is the [[electric field]]
:''B'' the [[magnetic field]] and
:''c'' the [[speed of light]]. When using [[natural units]], the speed of light is taken to equal 1.
 
Therefore, ''F'' is a [[differential form|differential 2-form]]— an antisymmetric rank-2 tensor field—on Minkowski space. In component form,
From the matrix form of the field tensor, it becomes clear that the electromagnetic tensor satisfies the following properties (''Mathematical note: In this article, the [[abstract index notation]] will be used.''):
 
:<math>F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu.</math>
* [[antisymmetric|antisymmetry]]: <math>F^{ab} \, = - F^{ba}</math> (hence the name [[bivector]]).
* zero [[trace (linear algebra)|trace]].
* [[triangular number|six]] independent components.
 
where <math>\partial</math> is the [[four-gradient]] and <math>A</math> is the [[electromagnetic four-potential|four-potential]].
More formally, the electromagnetic tensor may be written in terms of the [[four-potential]] <math>\, A^a</math>
 
[[Maxwell's equations#Conventional formulation in SI units|SI units for Maxwell's equations]] and the [[sign convention#Metric signature|particle physicist's sign convention]] for the [[Metric signature|signature]] of [[Minkowski space]] {{nowrap|(+ − − −)}}, will be used throughout this article.
 
===Relationship with the classical fields===
The Faraday [[Differential form|differential 2-form]] is given by
 
:<math>
F = (E_x/c)\ dx \wedge dt + (E_y/c)\ dy \wedge dt + (E_z/c)\ dz \wedge dt + B_x\ dy \wedge dz + B_y\ dz \wedge dx + B_z\ dx \wedge dy,
F_{ a b } \equiv \frac{ \partial A_b }{ \partial x^a } - \frac{ \partial A_a }{ \partial x^b } \equiv
\partial_a A_b - \partial_b A_a \equiv A_{ b , a } - A_{ a , b }
</math>
 
where <math>A^a =dt ( \phi , \vec A c )</math> andis <math>A_athe \,time =element \eta_{times athe bspeed }of A^blight </math> (<math>\,c \eta</math> is the [[Minkowski metric]]).
 
This is the [[exterior derivative]] of its 1-form antiderivative
===Derivation===
To derive all the elements in the electromagnetic tensor we need to define
:<math>\partial_a = \left(\frac{1}{c} \frac{\partial}{\partial t}, \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right) = \left(\frac{1}{c} \frac{\partial}{\partial t}, \nabla \right) \,</math>
and
:<math>A_a = \left(\frac{\Phi}{c}, -A_x, -A_y, -A_z \right) \,</math>
where
:<math>A \,</math> is the [[vector potential]]
:<math>\Phi \,</math> is the [[scalar potential]] and
:<math>c \,</math> is the speed of light
 
:<math> A = A_x\ dx + A_y\ dy + A_z\ dz - (\phi/c)\ dt </math>,
Electric and magnetic fields are derived from the vector potentials and the scalar potential with two formulas:
:<math>\vec{E} = -\frac{\partial \vec{A}}{\partial t} - \nabla \Phi \,</math>
:<math>\vec{B} = \nabla \times \vec{A} \,</math>
 
where <math> \phi(\vec{x},t) </math> has <math> -\vec{\nabla}\phi = \vec{E} </math> (<math> \phi </math> is a scalar potential for the [[Conservative vector field|irrotational/conservative vector field]] <math> \vec{E} </math>) and <math> \vec{A}(\vec{x},t) </math> has <math> \vec{\nabla} \times \vec{A} = \vec{B} </math> (<math> \vec{A} </math> is a vector potential for the [[solenoidal vector field]] <math> \vec{B} </math>).
As an example, the x components are just
:<math>E_x = -\frac{\partial A_x}{\partial t} - \frac{\partial \Phi}{\partial x} \,</math>
:<math>B_x = \frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \,</math>
 
Note that
Using the definitions we began with can re-write these two equations to look like:
:<math>E_x = -c \left(\partial_1 A_0 - \partial_0 A_1 \right) \,</math>
:<math>B_x = \partial_3 A_2 - \partial_2 A_3 \,</math>
 
:<math> \begin{cases} dF = 0 \\ {\star}d{\star}F = J \end{cases} </math>
Evaluating all the components results in a second-rank, antisymmetric and covariant tensor:
:<math>F_{a b} = \partial_a A_b - \partial_b A_a \,</math>
 
where <math> d </math> is the exterior derivative, <math>{\star}</math> is the [[Hodge star operator|Hodge star]], <math> J = -J_x\ dx - J_y\ dy - J_z\ dz + \rho\ dt </math> (where <math> \vec{J} </math> is the [[Current density|electric current density]], and <math> \rho </math> is the [[Charge density|electric charge density]]) is the 4-current density 1-form, is the differential forms version of Maxwell's equations.
==Significance of the Field Tensor==
 
The [[Electric field|electric]] and [[magnetic field]]s can be obtained from the components of the electromagnetic tensor. The relationship is simplest in [[Cartesian coordinate system|Cartesian coordinates]]:
Hidden beneath the surface of this overly complex mathematical equation is an ingenious unification of maxwell's equations for electromagnetism. Consider the electrostatic equation
 
:<math>\nablaE_i \cdot= \textbf{c E } = \frac{\rho}F_{\epsilon_00i},</math>
where ''c'' is the speed of light, and
:<math>B_i = -1/2\epsilon_{ijk} F^{jk},</math>
where <math>\epsilon_{ijk}</math> is the [[Levi-Civita tensor]]. This gives the fields in a particular reference frame; if the reference frame is changed, the components of the electromagnetic tensor will [[covariant transformation|transform covariantly]], and the fields in the new frame will be given by the new components.
In contravariant [[matrix (mathematics)|matrix]] form with metric signature (+,-,-,-),
:<math>
F^{\mu\nu} = \begin{bmatrix}
0 & -E_x/c & -E_y/c & -E_z/c \\
E_x/c & 0 & -B_z & B_y \\
E_y/c & B_z & 0 & -B_x \\
E_z/c & -B_y & B_x & 0
\end{bmatrix}.
</math>
 
The covariant form is given by [[Raising and lowering indices#Order-2|index lowering]],
which tells us that the divergence of the Electric field vector is equal to the charge density, and the electrodynamic equation
 
:<math>
F_{\mu\nu} = \eta_{\alpha\nu}F^{\beta\alpha}\eta_{\mu\beta} = \begin{bmatrix}
\nabla \times \textbf{ B } - \frac{1}{c^2} \frac{ \partial \textbf{ E }}{\partial t} = \mu_0 \textbf{ J }
0 & E_x/c & E_y/c & E_z/c \\
-E_x/c & 0 & -B_z & B_y \\
-E_y/c & B_z & 0 & -B_x \\
-E_z/c & -B_y & B_x & 0
\end{bmatrix}.
</math>
The Faraday tensor's [[Hodge star operator|Hodge dual]] is
:<math>
{ G^{\alpha\beta} = \frac{1}{2}\epsilon^{\alpha\beta\gamma\delta}F_{\gamma\delta}=\begin{bmatrix}
0 & -B_x & -B_y & -B_z \\
B_x & 0 & E_z/c & -E_y/c \\
B_y & -E_z/c & 0 & E_x/c \\
B_z & E_y/c & -E_x/c & 0
\end{bmatrix}
}
</math>
 
thatFrom isnow theon changein ofthis article, when the electric fieldor withmagnetic respectfields toare timementioned, minusa theCartesian [[curl]]coordinate ofsystem is assumed, and the electric and magnetic fieldfields vector,are iswith equalrespect to negativethe fourcoordinate system's reference frame, pias timesin the currentequations densityabove.
 
===Properties===
These two equations for electricity reduce to
 
The matrix form of the field tensor yields the following properties:<ref>{{cite book |author1=J. A. Wheeler |author2=C. Misner |author3=K. S. Thorne | title=[[Gravitation (book)|Gravitation]]| publisher=W.H. Freeman & Co| year=1973 | isbn=0-7167-0344-0}}</ref>
:<math>\partial_a F^{ab} = \mu_0 J^b</math>
where
:<math>J^a = ( \rho , J ) \,</math> is the [[4-current]].
 
#'''[[Skew-symmetric matrix|Antisymmetry]]:''' <math display="block">F^{\mu\nu} = - F^{\nu\mu}</math>
The same holds for magnetism. If we take the magnetostatic's equation
#'''Six independent components:''' In Cartesian coordinates, these are simply the three spatial components of the electric field (''E<sub>x</sub>, E<sub>y</sub>, E<sub>z</sub>'') and magnetic field (''B<sub>x</sub>, B<sub>y</sub>, B<sub>z</sub>'').
#'''Inner product:''' If one forms an inner product of the field strength tensor a [[Lorentz invariant]] is formed <math display="block">F_{\mu\nu} F^{\mu\nu} = 2 \left( B^2-\frac{E^2}{c^2} \right)</math> meaning this number does not change from one [[frame of reference]] to another.
#'''[[Pseudoscalar]] invariant:''' The product of the tensor <math>F^{\mu\nu}</math> with its [[Hodge dual]] <math>G^{\mu\nu}</math> gives a [[Lorentz invariant]]: <math display="block">G_{\gamma\delta}F^{\gamma\delta} = \frac{1}{2}\epsilon_{\alpha\beta\gamma\delta}F^{\alpha\beta} F^{\gamma\delta} = -\frac{4}{c} \mathbf{B} \cdot \mathbf{E} \,</math> where <math>\epsilon_{\alpha\beta\gamma\delta}</math> is the rank-4 [[Levi-Civita symbol]]. The sign for the above depends on the convention used for the Levi-Civita symbol. The convention used here is <math> \epsilon_{0123} = -1 </math>. This and the previous Lorentz invariant vanish in the crossed field case.
#'''[[Determinant]]:''' <math display="block">\det \left( F \right) = \frac{1}{c^2} \left( \mathbf{B} \cdot \mathbf{E} \right)^2</math> which is proportional to the square of the above invariant.
#'''[[Trace (linear algebra)|Trace]]:''' <math display="block">F={{F}^{\mu }}_{\mu }=0</math> which is equal to zero.
 
===Significance===
:<math>
\nabla \cdot \textbf{ B } = 0
</math>
 
This tensor simplifies and reduces [[Maxwell's equations]] as four vector calculus equations into two tensor field equations. In [[electrostatic]]s and [[electrodynamic]]s, [[Gauss's law]] and [[Ampère's circuital law]] are respectively:
which tells us that there are no "true" magnetic charges, and the magnetodynamics equation
 
:<math>\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0},\quad \nabla \times \mathbf{B} - \frac{1}{c^2} \frac{ \partial \mathbf{E}}{\partial t} = \mu_0 \mathbf{J} </math>
:<math>
\frac{ \partial \textbf{ B }}{ \partial t } + \nabla \times \textbf{ E } = 0
</math>
 
and reduce to the inhomogeneous Maxwell equation:
which tells us the change of the magnetic field with respect to time plus the [[curl]] of the Electric field is equal to zero (or, alternatively, the curl of the electric field is equal to the negative change of the magnetic field with respect to time). With the electromagnetic tensor, the equations for magnetism reduce to
 
:<math>F_\partial_{\alpha} aF^{\beta\alpha} b= ,- c\mu_0 J^{\beta}</math>, + F_{ b cwhere , a <math>J^{\alpha} += F_{( c a \rho, b \mathbf{J} =) 0. \,</math> is the [[four-current]].
 
In [[magnetostatic]]s and magnetodynamics, [[Gauss's law for magnetism]] and [[Faraday's law of induction|Maxwell–Faraday equation]] are respectively:
== The field tensor and relativity ==
 
:<math>\nabla \cdot \mathbf{B} = 0,\quad \frac{ \partial \mathbf{B}}{ \partial t } + \nabla \times \mathbf{E} = \mathbf{0} </math>
The field tensor derives its name from the fact that the electromagnetic field is found to obey the [[tensor transformation law]], this general property of (non-gravitational) physical laws being recognised after the advent [[special relativity]]. This theory stipulated that all the (non-gravitational) laws of physics should take the same form in all coordinate systems - this led to the introduction of [[tensor]]s. The tensor formalism also leads to a mathematically elegant presentation of physical laws. For example, [[Maxwell's equations]] of electromagnetism may be written using the field tensor as:
 
which reduce to the [[Bianchi identity]]:
<math>F_{[ab,c]} \, = 0</math> and <math>F^{ab}{}_{,b} \, = \mu_0 J^a</math>
 
:<math> \partial_\gamma F_{ \alpha \beta } + \partial_\alpha F_{ \beta \gamma } + \partial_\beta F_{ \gamma \alpha } = 0 </math>
where the comma indicates a [[partial derivative]]. The second equation implies [[continuity equation|conservation of charge]]:
 
or using the [[Ricci calculus#Symmetric and antisymmetric parts|index notation with square brackets]]{{ref|antisymmetric|[note 1]}} for the antisymmetric part of the tensor:
<math>J^a{}_{,a} \, = 0</math>
 
:<math> \partial_{ [ \alpha } F_{ \beta \gamma ] } = 0 </math>
In general relativity, these laws can be generalised in (what many physicists consider to be) an appealing way:
Using the expression relating the Faraday tensor to the four-potential, one can prove that the above antisymmetric quantity turns to zero identically (<math>\equiv 0</math>). This tensor equation reproduces the homogeneous Maxwell's equations.
 
==Relativity==
<math>F_{[ab;c]} \, = 0</math> and <math>F^{ab}{}_{;b} \, = \mu_0 J^a</math>
 
{{main|Maxwell's equations in curved spacetime}}
where the semi-colon represents a [[covariant derivative]], as opposed to a partial derivative. The elegance of these equations stems from the simple replacing of partial with covariant derivatives, a practice sometimes referred to in the parlance of GR as 'replacing partial with covariant derivatives'. These equations are sometimes referred to as the ''curved space Maxwell equations''. Again, the second equation implies charge conservation (in curved spacetime):
 
The field tensor derives its name from the fact that the electromagnetic field is found to obey the [[tensor transformation law]], this general property of physical laws being recognised after the advent of [[special relativity]]. This theory stipulated that all the laws of physics should take the same form in all coordinate systems – this led to the introduction of [[tensor]]s. The tensor formalism also leads to a mathematically simpler presentation of physical laws.
<math>J^a{}_{;a} \, = 0</math>
 
The inhomogeneous Maxwell equation leads to the [[continuity equation]]:
==Role in Quantum Electrodynamics and Field Theory==
The [[Lagrangian]] of QED extends beyond the classical Lagrangian established in relativity from <math>L = - \frac{1}{4\pi}F^{\mu\nu}F_{\mu\nu},</math> to incorporate the creation and annihilation of photons (and electrons).
 
:<math>\partial_\alpha J^\alpha = J^\alpha{}_{,\alpha} = 0</math>
In Quantum field theory, it is used for the template of the gauge field strength tensor. That is used in addition to the local interaction Lagrangian, nearly identical to its role in QED.
 
implying [[conservation of charge]].
== See also ==
 
Maxwell's laws above can be generalised to [[curved spacetime]] by simply replacing [[partial derivative]]s with [[covariant derivative]]s:
* [[Application of tensor theory in physics]]
 
:<math>F_{[\alpha\beta;\gamma]} = 0</math> and <math>F^{\alpha\beta}{}_{;\alpha} = \mu_0 J^{\beta}</math>
 
where the [[Covariant derivative#Notation|semicolon notation]] represents a covariant derivative, as opposed to a partial derivative. These equations are sometimes referred to as the [[Maxwell's equations in curved spacetime|curved space Maxwell equations]]. Again, the second equation implies charge conservation (in curved spacetime):
 
:<math>J^\alpha{}_{;\alpha} \, = 0</math>
 
The stress-energy tensor of electromagnetism
:<math>T^{\mu\nu} = \frac{1}{\mu_0} \left[ F^{\mu \alpha}F^\nu{}_{\alpha} - \frac{1}{4} \eta^{\mu\nu}F_{\alpha\beta} F^{\alpha\beta}\right] \,,</math>
satisfies
:<math>{T^{\alpha\beta}}_{,\beta} + F^{\alpha\beta} J_\beta = 0\,.</math>
 
==Lagrangian formulation of classical electromagnetism==
 
{{see also|Classical field theory}}
 
[[Classical electromagnetism]] and [[Maxwell's equations]] can be derived from the [[action (physics)|action]]:
<math display="block">\mathcal{S} = \int \left( -\begin{matrix} \frac{1}{4 \mu_0} \end{matrix} F_{\mu\nu} F^{\mu\nu} - J^\mu A_\mu \right) \mathrm{d}^4 x \,</math>
where <math>\mathrm{d}^4 x</math> is over space and time.
 
This means the [[Lagrangian (field theory)|Lagrangian]] density is
 
:<math>\begin{align}
\mathcal{L} &= -\frac{1}{4\mu_0} F_{\mu\nu} F^{\mu\nu} - J^\mu A_\mu \\
&= -\frac{1}{4\mu_0} \left( \partial_\mu A_\nu - \partial_\nu A_\mu \right) \left( \partial^\mu A^\nu - \partial^\nu A^\mu \right) - J^\mu A_\mu \\
&= -\frac{1}{4\mu_0} \left( \partial_\mu A_\nu \partial^\mu A^\nu - \partial_\nu A_\mu \partial^\mu A^\nu - \partial_\mu A_\nu \partial^\nu A^\mu + \partial_\nu A_\mu \partial^\nu A^\mu \right) - J^\mu A_\mu \\
\end{align}</math>
 
The two middle terms in the parentheses are the same, as are the two outer terms, so the Lagrangian density is
 
:<math>\mathcal{L} = - \frac{1}{2\mu_0} \left( \partial_\mu A_\nu \partial^\mu A^\nu - \partial_\nu A_\mu \partial^\mu A^\nu \right) - J^\mu A_\mu.</math>
 
Substituting this into the [[Euler–Lagrange equation]] of motion for a field:
 
:<math> \partial_\mu \left( \frac{\partial \mathcal{L}}{\partial ( \partial_\mu A_\nu )} \right) - \frac{\partial \mathcal{L}}{\partial A_\nu} = 0 </math>
 
So the Euler–Lagrange equation becomes:
 
:<math> - \partial_\mu \frac{1}{\mu_0} \left( \partial^\mu A^\nu - \partial^\nu A^\mu \right) + J^\nu = 0. \,</math>
 
The quantity in parentheses above is just the field tensor, so this finally simplifies to
 
:<math> \partial_\mu F^{\mu \nu} = \mu_0 J^\nu </math>
 
That equation is another way of writing the two inhomogeneous [[Maxwell's equations]] (namely, [[Gauss's law]] and [[Ampère's circuital law]]) using the substitutions:
 
:<math>\begin{align}
\frac{1}{c}E^i &= -F^{0 i} \\
\epsilon^{ijk} B_k &= -F^{ij}
\end{align}</math>
 
where ''i, j, k'' take the values 1, 2, and 3.
 
===Hamiltonian form===
 
The [[Hamiltonian field theory|Hamiltonian]] density can be obtained with the usual relation,
 
:<math>\mathcal{H}(\phi^i,\pi_i) = \pi_i \dot{\phi}^i(\phi^i,\pi_i) - \mathcal{L} \,.</math>
 
Here <math>\phi^i=A^{i}</math> are the fields and the momentum density of the EM field is
 
:<math>\pi_i= T_{0i}=\frac{1}{\mu_0} F_0{}^{ \alpha}F_{i\alpha}=\frac{1}{\mu_0 c} \mathbf{E}\times\mathbf{B} \,.</math>
such that the conserved quantity associated with translation from [[Noether's theorem]] is the total momentum
:<math>\mathbf{P}= \sum_{\alpha} m_\alpha \dot{\mathbf{x}}_{\alpha} + \frac{1}{\mu_0 c}\int_{\mathcal{V}} \mathrm{d}^3 x\, \mathbf{E}\times\mathbf{B} \,.</math>
 
The Hamiltonian density for the electromagnetic field is related to the [[electromagnetic stress-energy tensor]]
:<math>T^{\mu\nu} = \frac{1}{\mu_0} \left[ F^{\mu \alpha}F^\nu{}_{\alpha} - \frac{1}{4} \eta^{\mu\nu}F_{\alpha\beta} F^{\alpha\beta}\right] \,.</math>
 
as
 
:<math>\mathcal{H} = T_{0 0} = \frac{1}{2}\left(\epsilon_0 \mathbf{E}^2+\frac{1}{\mu_0}\mathbf{B}^2\right) = \frac{1}{8\pi}\left(\mathbf{E}^2+\mathbf{B}^2\right)\,.</math>
 
where we have neglected the [[perfect fluid|energy density of matter]], assuming only the EM field, and the last equality assumes the CGS system. The momentum of nonrelativistic charges interacting with the EM field in the [[Coulomb gauge]] (<math>\nabla\cdot \mathbf{A}=\nabla_i A^i = 0</math>) is
 
:<math>\mathbf{p}_\alpha = m_\alpha \dot{\mathbf{x}}_{\alpha} + \frac{q_{\alpha}}{c} \mathbf{A}(\mathbf{x}_\alpha) \,.</math>
 
The total Hamiltonian of the matter + EM field system is
 
:<math>H = \int_\mathcal{V} d^3 x \,T_{00} = H_{\rm mat} + H_{\rm em} \,.</math>
 
where for nonrelativistic point particles in the Coulomb gauge
 
:<math>H_{\rm mat} = \sum_\alpha m_{\alpha} |\dot{\mathbf{x}}_{\alpha}|^2+ \sum_{\alpha<\beta} \frac{q_{\alpha}q_{\beta}}{|\mathbf{x}_{\alpha} - \mathbf{x}_{\beta}| } =
\sum_\alpha \frac{1}{2m_\alpha} \left[\mathbf{p}_{\alpha} - \frac{q_{\alpha}}{c} \mathbf{A}(\mathbf{x}_\alpha)\right]^2 + \sum_{\alpha<\beta} \frac{q_{\alpha}q_{\beta}}{|\mathbf{x}_{\alpha} - \mathbf{x}_{\beta}| } \,.</math>
 
where the last term is identically <math>\frac{1}{8\pi} \int_\mathcal{V} d^3 x \mathbf{E}_{\parallel}^2</math> where <math>{E}_{\parallel i} = {\nabla_i}A_0</math>
and
 
:<math>H_{\rm em} = \frac{1}{8\pi} \int_\mathcal{V} d^3 x \left(\mathbf{E}_{\perp}^2+\mathbf{B}^2\right) \,.</math>
where and <math>{E}_{\perp i} = -\frac{1}{c}\partial_0 A_i</math>.
 
===Quantum electrodynamics and field theory===
 
{{main|Quantum electrodynamics|quantum field theory}}
 
The [[Lagrangian (field theory)|Lagrangian]] of [[quantum electrodynamics]] extends beyond the classical Lagrangian established in relativity to incorporate the creation and annihilation of photons (and electrons):
 
:<math>\mathcal{L} = \bar\psi \left(i\hbar c \, \gamma^\alpha D_\alpha - mc^2\right) \psi - \frac{1}{4\mu_0} F_{\alpha\beta} F^{\alpha\beta},</math>
 
where the first part in the right hand side, containing the [[Dirac spinor]] <math>\psi</math>, represents the [[Dirac field]]. In [[quantum field theory]] it is used as the template for the gauge field strength tensor. By being employed in addition to the local interaction Lagrangian it reprises its usual role in QED.
 
==See also==
* [[Classification of electromagnetic fields]]
* [[Covariant formulation of classical electromagnetism]]
* [[Electromagnetic stress–energy tensor]]
* [[Gluon field strength tensor]]
* [[Ricci calculus]]
* [[Riemann–Silberstein vector]]
 
==ReferencesNotes==
*{{Book reference | Author=Brau, Charles A. | Title=Modern Problems in Classical Electrodynamics | Publisher=Oxford University Press | Year=2004 | ID=ISBN 0195146654}}
 
{{Reflist|group="note"}}
{{relativity-stub}}
 
{{ordered list
|1={{note|antisymmetric}} By definition,
 
:<math> T_{[abc]} = \frac{1}{3!}(T_{abc} + T_{bca} + T_{cab} - T_{acb} - T_{bac} - T_{cba})</math>
So if
:<math> \partial_\gamma F_{ \alpha \beta } + \partial_\alpha F_{ \beta \gamma } + \partial_\beta F_{ \gamma \alpha } = 0</math>
then
:<math>\begin{align}
0 & = \begin{matrix} \frac{2}{6} \end{matrix} ( \partial_\gamma F_{ \alpha \beta } + \partial_\alpha F_{ \beta \gamma } + \partial_\beta F_{ \gamma \alpha }) \\
& = \begin{matrix} \frac{1}{6} \end{matrix} \{ \partial_\gamma (2F_{ \alpha \beta }) + \partial_\alpha (2F_{ \beta \gamma }) + \partial_\beta (2F_{ \gamma \alpha }) \} \\
& = \begin{matrix} \frac{1}{6} \end{matrix} \{ \partial_\gamma (F_{ \alpha \beta } - F_{ \beta \alpha}) + \partial_\alpha (F_{ \beta \gamma } - F_{ \gamma \beta}) + \partial_\beta (F_{ \gamma \alpha } - F_{ \alpha \gamma}) \} \\
& = \begin{matrix} \frac{1}{6} \end{matrix} ( \partial_\gamma F_{ \alpha \beta } + \partial_\alpha F_{ \beta \gamma } + \partial_\beta F_{ \gamma \alpha } - \partial_\gamma F_{ \beta \alpha} - \partial_\alpha F_{ \gamma \beta} - \partial_\beta F_{ \alpha \gamma} ) \\
& = \partial_{[ \gamma} F_{ \alpha \beta ]}
\end{align}</math>
}}
 
{{reflist}}
 
==References==
*{{cite book | author=Brau, Charles A. | title=Modern Problems in Classical Electrodynamics | publisher=[[Oxford University Press]] | year=2004 | isbn=0-19-514665-4}}
*{{cite book | author=Jackson, John D. | title=Classical Electrodynamics | url=https://archive.org/details/classicalelectro0000jack_e8g9 | url-access=registration | publisher=[[John Wiley & Sons, Inc.]] | year=1999 | isbn=0-471-30932-X}}
*{{cite book | author1=Peskin, Michael E. | author2=Schroeder, Daniel V. | title=An Introduction to Quantum Field Theory | publisher=Perseus Publishing | year=1995 | isbn=0-201-50397-2 | url-access=registration | url=https://archive.org/details/introductiontoqu0000pesk }}
 
{{tensors}}
[[Category:Electromagnetism]][[Category:Relativity]][[Category:Tensors]][[Category:Tensors in general relativity]]
 
[[Category:Electromagnetism]]
[[de:Elektromagnetischer Feldstärketensor]]
[[Category:Minkowski spacetime]]
[[he:טנזור השדה האלקטרומגנטי]]
[[Category:Theory of relativity]]
[[Category:Tensor physical quantities]]
[[Category:Tensors in general relativity]]