Content deleted Content added
→References: ref |
Citation bot (talk | contribs) Misc citation tidying. | Use this bot. Report bugs. | #UCB_CommandLine |
||
(35 intermediate revisions by 20 users not shown) | |||
Line 1:
{{Short description|Sub-field of mathematics}}
In [[mathematics]], a '''modular invariant''' of a [[group (mathematics)|group]] is an invariant of a [[finite group]] [[
==Dickson invariant==
When ''G'' is the finite
Then under the action of an element ''g'' of GL<sub>''n''</sub>('''F'''<sub>''p''</sub>) these determinants are all multiplied by det(''g''), so they are all invariants of SL<sub>''n''</sub>('''F'''<sub>''p''</sub>) and the ratio [''e''<sub>1</sub>, ... ,''e''<sub>''n''</sub>]/[0,1,...,''n''−1] are invariants of GL<sub>''n''</sub>('''F'''<sub>''p''</sub>), called '''Dickson invariants'''. Dickson proved that the full ring of invariants is a polynomial algebra over the ''n'' Dickson invariants [0,1,...,''i''−1,''i''+1,...,''n'']/[0,1,...,''n''−1] for ''i''=0, 1, ..., ''n''−1.▼
:<math>\begin{vmatrix} x_1 & x_1^q & x_1^{q^2}\\x_2 & x_2^q & x_2^{q^2}\\x_3 & x_3^q & x_3^{q^2} \end{vmatrix}</math>
▲Then under the action of an element ''g'' of GL<sub>''n''</sub>('''F'''<sub>''
{{harvtxt|Steinberg|1987}} gave a shorter proof of Dickson's theorem.
The matrices [''e''<sub>1</sub>, ..., ''e''<sub>''n''</sub>] are divisible by all non-zero linear forms in the variables ''X''<sub>''i''</sub> with coefficients in the finite field '''F'''<sub>''q''</sub>. In particular the [[Moore determinant over a finite field|Moore determinant]] [0, 1, ..., ''n'' − 1] is a product of such linear forms, taken over 1 + ''q'' + ''q''<sup>2</sup> + ... + ''q''<sup>''n'' – 1</sup> representatives of (''n'' – 1)-dimensional [[projective space]] over the field. This factorization is similar to the factorization of the [[Vandermonde determinant]] into linear factors.
==See also==
*[[
==References==
*{{Citation | last1=Dickson | first1=Leonard Eugene | author1-link=Leonard Eugene Dickson | title=A Fundamental System of Invariants of the General Modular Linear Group with a Solution of the Form Problem |
*{{Citation | last1=Dickson | first1=Leonard Eugene | author1-link=Leonard Eugene Dickson | title=On invariants and the theory of numbers |
*{{Citation | last1=Rutherford | first1=Daniel Edwin | authorlink=Daniel Edwin Rutherford | title=Modular invariants |
*{{Citation | last1=Sanderson | first1=Mildred | authorlink=Mildred Sanderson | title=Formal Modular Invariants with Application to Binary Modular Covariants |
*{{Citation | last1=Steinberg | first1=Robert | authorlink=Robert Steinberg | title=On Dickson's theorem on invariants | url=http://repository.dl.itc.u-tokyo.ac.jp/dspace/bitstream/2261/1682/1/jfs340309.pdf | mr=927606 | year=1987 | journal=Journal of the Faculty of Science. University of Tokyo. Section IA. Mathematics | issn=0040-8980 | volume=34 | issue=3 | pages=699–707 | access-date=2010-12-02 | archive-url=https://web.archive.org/web/20120305205421/http://repository.dl.itc.u-tokyo.ac.jp/dspace/bitstream/2261/1682/1/jfs340309.pdf | archive-date=2012-03-05 | url-status=dead }}
{{DEFAULTSORT:Modular Invariant Of A Group}}
[[Category:Invariant theory]]
|