Discrete dipole approximation codes: Difference between revisions

Content deleted Content added
Bibcode Bot (talk | contribs)
m Converting 0 "id = {{arxiv|...}}" to "|arxiv=...". Adding 0 arXiv eprint(s), 6 bibcode(s) and 0 doi(s). Did it miss something? Report bugs, errors, and suggestions at User talk:Bibcode Bot
m v2.05 - Fix errors for CW project (Heading start with three "=" and later with level two - Unbalanced quotes in ref name or illegal character or empty name.)
 
(48 intermediate revisions by 28 users not shown)
Line 1:
'''Discrete dipole approximation codes'''. This is a list of Discrete Dipole Approximation (DDA) codes. The "code" here indicates computer code, a particular implementation of the DDA (many of them are [[open-source]]). For theoretical approach see [[Discrete dipole approximation]] article.
This article contains list of '''discrete dipole approximation codes''' and their applications.
 
Most of the codes apply to arbitrary-shaped inhomogeneous nonmagnetic particles and particle systems in free space or homogeneous dielectric host medium. The calculated quantities typically include the [[Mueller_calculus#Mueller_matrices|Mueller matrices]], [[Cross_section_(physics)#Scattering_of_light|integral cross-sections]] (extinction, absorption, and scattering), internal fields and angle-resolved scattered fields (phase function). There are some published comparisons of existing DDA codes.<ref name=penttila2007/>
The [[discrete dipole approximation]] (DDA) is a flexible technique for computing scattering and absorption by targets of arbitrary geometry. Given a target of arbitrary geometry, one seeks to calculate its scattering and absorption properties. The DDA is an approximation of the continuum target by a finite array of polarizable points. The points acquire dipole moments in response to the local electric field. The dipoles of course interact with one another via their electric fields, so the DDA is also sometimes referred to as the coupled dipole approximation. It is closely related to method of moments, digitized Green's function, volume integral method.
 
== General-purpose open-source DDA codes ==
==Classification==
These codes typically use regular grids (cubical or rectangular cuboid), [[conjugate gradient method]] to solve large [[System of linear equations|systems of linear equations]], and FFT-acceleration of the matrix-vector products which uses convolution theorem. Complexity of this approach is almost linear in number of dipoles for both time and memory.<ref name=Yurkin2007a/>
The compilation contains information about the [[discrete dipole approximation]], relevant links, and their applications. There are reviews
<ref name=Draine1994a>{{Cite journal
| doi = 10.1364/JOSAA.11.001491
| author = B. T. Draine and P. J. Flatau
| title = Discrete dipole approximation for scattering calculations
| journal = J. Opt. Soc. Am. A
| volume = 11
| issue = 4
| pages = 1491–1499
| year = 1994
|bibcode = 1994JOSAA..11.1491D }}</ref>
<ref>{{Cite journal
| doi = 10.1016/j.jqsrt.2007.01.034
| volume = 106
| issue = 1-3
| pages = 558–589
| author = M. A. Yurkin and A. G. Hoekstra
| title = The discrete dipole approximation: an overview and recent developments
| journal = J. Quant. Spectrosc. Radiat. Transfer
| year = 2007
| url = http://sites.google.com/site/yurkin/publications/papers/YurkinandHoekstra-2007-Thediscretedipoleapproximation%2Canoverviewandrecentdevelopments.pdf
|bibcode = 2007JQSRT.106..558Y }}</ref>
as well as published comparison of existing codes.
<ref>{{Cite journal
| doi = 10.1016/j.jqsrt.2007.01.026
| volume = 106
| issue = 1-3
| pages = 417–436
| author = A. Penttila, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov
| title = Comparison between discrete dipole implementations and exact techniques
| journal = J. Quant. Spectrosc. Radiat. Transfer
| year = 2007
| url = http://sites.google.com/site/yurkin/publications/papers/Penttilaetal-2007-Comparisonbetweendiscretedipoleimplementations.pdf
|bibcode = 2007JQSRT.106..417P }}</ref>
 
{| class="wikitable" style="text-align:center;"
===General purpose public ___domain DDA codes===
|- style="background-color: #efefef; font-weight: bold;"
{| class="wikitable"
! Name !! Authors !! References !! Language !! Updated !! Features
|- style="background-color: #efefef;"
|-
! Year !! Name !! Authors !! References !! Language !! Short Description
| style="background-color: #ffffff;" | [http://ddscat.wikidot.com/ DDSCAT]
|-
| style="background-color: #ffffff;" | Draine and Flatau
|1993
| style="background-color: #ffffff;" | <ref name=draine1994/>
| DDSCAT <ref>[http://www.astro.princeton.edu/~draine/DDSCAT.7.0.html DDSCAT B. T. Draine page]</ref><ref>[http://code.google.com/p/ddscat/ DDSCAT Google Code page]</ref>
| style="background-color: #ffffff;" | Fortran
| B. T. Draine and P.J. Flatau
| style="background-color: #ffffff;" | 2019 (v.{{nbsp}}7.3.3)
| <ref name=Draine1994a/>
| style="background-color: #ffffff;" | Can also handle periodic particles and efficiently calculate [[Electromagnetic_radiation#Near_and_far_fields|near fields]]. Uses [[OpenMP]] acceleration.
<ref>{{Cite journal
|-
| doi = 10.1364/JOSAA.25.002693
| style="background-color: #eeeeee;" | [http://space.univ.kiev.ua/Choliy/DDscatcpp/ DDscat.C++]
| volume = 25
| style="background-color: #eeeeee;" | Choliy
| issue = 11
| style="background-color: #eeeeee;" | <ref name=choily2013/>
| pages = 2693–2703
| style="background-color: #eeeeee;" | C++
| author=B. T. Draine and P. J. Flatau
| style="background-color: #eeeeee;" | 2017 (v.{{nbsp}}7.3.1)
| title = Discrete-dipole approximation for periodic targets: theory and tests
| style="background-color: #eeeeee;" | Version of DDSCAT translated to C++ with some further improvements.
| journal = J. Opt. Soc. Am. A.
|-
| year = 2008
| style="background-color: #ffffff;" | [https://github.com/adda-team/adda/ ADDA]
| arxiv = 0809.0338
| style="background-color: #ffffff;" | Yurkin, Hoekstra, and contributors
|bibcode = 2008JOSAA..25.2693D }}</ref>
| style="background-color: #ffffff;" | <ref name=yurkin2007b/><ref name=yurkin2011/>
| Fortran
| style="background-color: #ffffff;" | C
| Calculates scattering and absorption of electromagnetic waves by particles of arbitrary geometry and periodic particles.
| style="background-color: #ffffff;" | 2020 (v.{{nbsp}}1.4.0)
|-
| style="background-color: #ffffff;" | Implements fast and rigorous consideration of a plane substrate, and allows rectangular-cuboid voxels for highly oblate or prolate particles. Can also calculate [[Purcell_effect|emission (decay-rate) enhancement]] of point emitters. [[Electromagnetic_radiation#Near_and_far_fields|Near-fields]] calculation is not very efficient. Uses [[Message Passing Interface]] (MPI) parallelization and can run on GPU ([[OpenCL]]).
|2006
|-
| ADDA <ref>[http://code.google.com/p/a-dda/ ADDA Google Code page]</ref>
| style="background-color: #eeeeee;" | [https://github.com/drjmcdonald/OpenDDA/ OpenDDA]
| Maxim A. Yurkin and Alfons G. Hoekstra
| style="background-color: #eeeeee;" | McDonald
| <ref>{{Cite journal
| style="background-color: #eeeeee;" | <ref name=mcdonald2009/><ref name=mcdonald2007a/>
| doi = 10.1016/j.jqsrt.2007.01.033
| style="background-color: #eeeeee;" | C
| volume = 106
| style="background-color: #eeeeee;" | 2009 (v.{{nbsp}}0.4.1)
| issue = 1-3
| style="background-color: #eeeeee;" | Uses both OpenMP and MPI parallelization. Focuses on computational efficiency.
| pages = 546–557
|-
| author = M. A. Yurkin, V. P. Maltsev and A. G. Hoekstra
| style="background-color: #ffffff;" | [https://github.com/steffen-kiess/dda DDA-GPU]
| title = The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength
| style="background-color: #ffffff;" | Kieß
| journal = J. Quant. Spectrosc. Radiat. Transfer
| style="background-color: #ffffff;" | <ref name=zimmermann2012/>
| year = 2007
| style="background-color: #ffffff;" | C++
| url = http://sites.google.com/site/yurkin/publications/papers/Yurkinetal-2007-Thediscretedipoleapproximationforsimulationoflightscattering.pdf
| style="background-color: #ffffff;" | 2016
|bibcode = 2007JQSRT.106..546Y }}</ref>
| style="background-color: #ffffff;" | Runs on GPU (OpenCL). Algorithms are partly based on ADDA.
| C
|-
| Calculates scattering and absorption of electromagnetic waves by particles of arbitrary geometry.
| style="background-color: #eeeeee;" | [https://github.com/Sha-Group/VIE_FFT VIE-FFT]
|-
| style="background-color: #eeeeee;" | Sha
|2009
| style="background-color: #eeeeee;" | <ref name=sha2011/>
| OpenDDA <ref>[http://www.opendda.org/ OpenDDA home page]</ref>
| style="background-color: #eeeeee;" | C/C++
| James Mc Donald
| style="background-color: #eeeeee;" | 2019
| <ref>{{Cite journal
| style="background-color: #eeeeee;" | Also calculates [[Electromagnetic_radiation#Near_and_far_fields|near fields]] and material absorption. Named differently, but the algorithms are very similar to the ones used in the mainstream DDA.
| doi = 10.1177/1094342008097914
|-
| volume = 23
| style="background-color: #ffffff;" | [https://github.com/samuelpgroth/VoxScatter VoxScatter ]
| issue = 1
| style="background-color: #ffffff;" | Groth, Polimeridis, and White
| pages = 42–61
| style="background-color: #ffffff;" | <ref name=groth2020/>
| author = J. McDonald, A. Golden, and G. Jennings
| style="background-color: #ffffff;" | Matlab
| title = OpenDDA: a novel high-performance computational framework for the discrete dipole approximation
| style="background-color: #ffffff;" | 2019
| journal = Int. J. High Perf. Comp. Appl.
| style="background-color: #ffffff;" | Uses circulant preconditioner for accelerating iterative solvers
| year = 2009
|-
| arxiv = 0908.0863
| style="background-color: #eeeeee;" | [https://www.fresnel.fr/spip/spip.php?article2735 IF-DDA]
}}</ref>
| style="background-color: #eeeeee;" | Chaumet, Sentenac, and Sentenac
<ref>{{Cite journal
| style="background-color: #eeeeee;" | <ref name=chaumet2021/>
| publisher = National University of Ireland, Galway
| style="background-color: #eeeeee;" | Fortran, GUI in C++ with Qt
| author = J. McDonald
| style="background-color: #eeeeee;" | 2021 (v.{{nbsp}}0.9.19)
| journal = PhD thesis
| style="background-color: #eeeeee;" | Idiot-friendly DDA. Uses OpenMP and HDF5. Has a separate version (IF-DDAM) for multi-layered substrate.
| title = OpenDDA - a novel high-performance computational framework for the discrete dipole approximation
|-
| year = 2007
| style="background-color: #ffffff;" | [https://github.com/MasoudShabani/MPDDA-1.0 MPDDA]
| url = http://www.opendda.org/assets/docs/thesis_JMcD_OpenDDA.pdf
| style="background-color: #ffffff;" | Shabaninezhad, Awan, and Ramakrishna
}}</ref>
| style="background-color: #ffffff;" | <ref name=matlab2021/>
| C
| style="background-color: #ffffff;" | Matlab
| Calculates scattering and absorption of electromagnetic waves by particles of arbitrary geometry.
| style="background-color: #ffffff;" | 2021 (v.{{nbsp}}1.0)
| style="background-color: #ffffff;" | Runs on GPU (using Matlab capabilities)
|-
| style="background-color: #ffffff;" | [https://gitlab.com/dmcxu1/cpdda CPDDA]
| style="background-color: #ffffff;" | Dibo Xu and others
| style="background-color: #ffffff;" | <ref name="Xu2025" />
| style="background-color: #ffffff;" | Python
| style="background-color: #ffffff;" | 2025
| style="background-color: #ffffff;" | GPU acceleration using CuPy
|}
 
=== Specialized DDA codes= ==
These list include codes that do not qualify for the previous section. The reasons may include the following: source code is not available, [[Fast Fourier transform|FFT]] acceleration is absent or reduced, the code focuses on specific applications not allowing easy calculation of standard scattering quantities.
{| class="wikitable"
 
|- style="background-color: #efefef;"
 
! Year !! Name !! Authors !! References !! Language !! Short Description
{| class="wikitable" style="text-align:center;"
|-
|- style="background-color: #f2f2f2; font-weight: bold;"
|2002
! Name !! Authors !! References !! Language !! Updated !! Features
|
|-
| D. W. Mackowski
| style="background-color: #ffffff;" | DDSURF, DDSUB, DDFILM
| <ref>{{Cite journal
| style="background-color: #ffffff;" | Schmehl, Nebeker, and Zhang
| doi = 10.1364/JOSAA.19.000881
| style="background-color: #ffffff;" | <ref name=schmehl1997/><ref name=nebeker1998/><ref name=bae2008/>
| volume = 19
| style="background-color: #ffffff;" | Fortran
| issue = 5
| style="background-color: #ffffff;" | 2008
| pages = 881–893
| style="background-color: #ffffff;" | Rigorous handling of semi-infinite substrate and finite films (with arbitrary particle placement), but only 2D [[Fast Fourier transform|FFT]] acceleration is used.
| author = D. W. Mackowski
|-
| title = Discrete dipole moment method for calculation of the T matrix for nonspherical particles
| style="background-color: #eeeeee;" | DDMM
| journal = J. Opt. Soc. Am. A
| style="background-color: #eeeeee;" | Mackowski
| year = 2002
| style="background-color: #eeeeee;" | <ref name=mackowski2002/>
|bibcode = 2002JOSAA..19..881M }}</ref>
| style="background-color: #eeeeee;" | Fortran
| Fortran
| style="background-color: #eeeeee;" | 2002
| Calculates scattering and absorption of electromagnetic waves by particles of arbitrary geometry and calculates analytically orientationally averaged scattering properties.
| style="background-color: #eeeeee;" | Calculates [[T-matrix_method|T-matrix]], which can then be used to efficiently calculate orientation-averaged scattering properties.
|-
|-
|2006
| style="background-color: #ffffff;" | CDA
| CDA
| Matthewstyle="background-color: David#ffffff;" | McMahon
| style="background-color: #ffffff;" | <ref name=mcmahon2006/>
| <ref>{{Cite journal
| style="background-color: #ffffff;" | Matlab
| publisher = Vanderbilt University, Nashville, Tennessee
| style="background-color: #ffffff;" | 2006
| author = M. D. McMahon
| style="background-color: #ffffff;" |
| journal = PhD thesis
|-
| title = Effects of geometrical order on the linear and nonlinear optical properties of metal nanoparticles
| style="background-color: #eeeeee;" | [http://code.google.com/p/dda-si/ DDA-SI]
| year = 2006
| style="background-color: #eeeeee;" | Loke
| url = http://etd.library.vanderbilt.edu/ETD-db/available/etd-09012006-153819/unrestricted/MatthewMcMahonDissertation.pdf
| style="background-color: #eeeeee;" | <ref name=loke2011/>
}}</ref>
| style="background-color: #eeeeee;" | Matlab
| Matlab
| style="background-color: #eeeeee;" | 2014 (v.{{nbsp}}0.2)
| Calculates scattering and absorption of electromagnetic waves by particles of arbitrary geometry.
| style="background-color: #eeeeee;" | Rigorous handling of substrate, but no FFT acceleration is used.
|-
| style="background-color: #ffffff;" | [https://github.com/kitchenknif/PyDDA PyDDA]
| style="background-color: #ffffff;" | Dmitriev
| style="background-color: #ffffff;" |
| style="background-color: #ffffff;" | Python
| style="background-color: #ffffff;" | 2015
| style="background-color: #ffffff;" | Reimplementation of DDA-SI
|-
| style="background-color: #eeeeee;" | [http://faculty.washington.edu/masiello/codes/e-dda/ ''e''-DDA]
| style="background-color: #eeeeee;" | Vaschillo and Bigelow
| style="background-color: #eeeeee;" | <ref name=bigelow2012/>
| style="background-color: #eeeeee;" | Fortran
| style="background-color: #eeeeee;" | 2019 (v.{{nbsp}}2.0)
| style="background-color: #eeeeee;" | Simulates electron-energy loss spectroscopy and cathodoluminescence. Built upon DDSCAT 7.1.
|-
| style="background-color: #ffffff;" | [https://perso.unamur.be/~lhenrard/ddeels/ddeels.php DDEELS]
| style="background-color: #ffffff;" | Geuquet, Guillaume and Henrard
| style="background-color: #ffffff;" | <ref name=geuquet2010/>
| style="background-color: #ffffff;" | Fortran
| style="background-color: #ffffff;" | 2013 (v.{{nbsp}}2.1)
| style="background-color: #ffffff;" | Simulates electron-energy loss spectroscopy and cathodoluminescence. Handles substrate through image approximation, but no FFT acceleration is used.
|-
| style="background-color: #eeeeee;" | T-DDA
| style="background-color: #eeeeee;" | Edalatpour
| style="background-color: #eeeeee;" | <ref name=edalatpour2015/>
| style="background-color: #eeeeee;" | Fortran
| style="background-color: #eeeeee;" | 2015
| style="background-color: #eeeeee;" | Simulates near-field radiative heat transfer. The computational bottleneck is direct matrix inversion (no FFT acceleration is used). Uses OpenMP and MPI parallelization.
|-
| style="background-color: #ffffff;" | CDDA
| style="background-color: #ffffff;" | Rosales, Albella, González, Gutiérrez, and Moreno
| style="background-color: #ffffff;" | <ref name=cdda2021/>
| style="background-color: #ffffff;" |
| style="background-color: #ffffff;" | 2021
| style="background-color: #ffffff;" | Applies to chiral systems (solves coupled equations for electric and magnetic fields)
|-
| style="background-color: #eeeeee;" | [https://github.com/croningp/RD-DDA PyDScat]
| style="background-color: #eeeeee;" | Yibin Jiang, Abhishek Sharma and Leroy Cronin
| style="background-color: #eeeeee;" | <ref>{{cite journal | doi=10.1021/acs.jpclett.3c00395 | title=An Accelerated Method for Investigating Spectral Properties of Dynamically Evolving Nanostructures | year=2023 | last1=Jiang | first1=Yibin | last2=Sharma | first2=Abhishek | last3=Cronin | first3=Leroy | journal=The Journal of Physical Chemistry Letters | volume=14 | issue=16 | pages=3929–3938 | pmid=37078273 | pmc=10150391 }}</ref>
| style="background-color: #eeeeee;" | Python
| style="background-color: #eeeeee;" | 2023
| style="background-color: #eeeeee;" | Simulates nanostructures undergoing structural transformation with GPU acceleration.
|}
 
==Gallery of shapes==
==Relevant scattering codes==
<gallery>
*[[Codes for electromagnetic scattering by spheres]]
File:Shape periodic2d.png|Scattering by periodic structures such as slabs, gratings, of periodic cubes placed on a surface, can be solved in the discrete dipole approximation.
*[[Codes for electromagnetic scattering by cylinders]]
File:Shape_1d_cylinder.png|Scattering by infinite object (such as cylinder) can be solved in the discrete dipole approximation.
</gallery>
 
==See also==
* [[Computational electromagnetics]]
*[[Mie theory]]
* [[Light scattering by particles]]
*[[Finite-difference time-___domain method]]
* [[List of atmospheric radiative transfer codes]]
*[[Method of moments (electromagnetics)]]
 
==References==
{{reflist|refs=
<references/>
 
<ref name=bae2008>{{Cite journal
{{DEFAULTSORT:Discrete dipole approximation codes}}
|doi = 10.1364/JOSAA.25.001728
[[Category:Science-related lists]]
|volume = 25
|issue = 7
|pages = 1728–1736
|author1 = E. Bae| author2 = H. Zhang| author3 = E. D. Hirleman
|title = Application of the discrete dipole approximation for dipoles embedded in film
|journal = J. Opt. Soc. Am. A
|year = 2008
|pmid = 18594631
|bibcode = 2008JOSAA..25.1728B
}}</ref>
 
<ref name=bigelow2012>{{Cite journal
|doi = 10.1021/nn302980u
|pmid = 22849410
|volume = 6
|issue = 8
|pages = 7497–7504
|author1 = N. W. Bigelow |author2 = A. Vaschillo |author3 = V. Iberi |author4 = J. P. Camden| author5 = D. J. Masiello
|title = Characterization of the electron- and photon-driven plasmonic excitations of metal nanorods
|journal = ACS Nano
|year = 2012
}}</ref>
 
<ref name=choily2013>{{Cite journal
|volume = 3
|pages = 66–70
|author = V. Y. Choliy
|title = The discrete dipole approximation code DDscat.C++: features, limitations and plans
|journal = Adv. Astron. Space Phys.
|year = 2013
|url = http://aasp.kiev.ua/index.php?text=v3-066-070-Choliy
|bibcode = 2013AASP....3...66C
}}</ref>
 
 
 
<ref name=draine1994> {{cite journal
|doi=10.1364/JOSAA.11.001491
|author1=Draine, B.T. |author2=P.J. Flatau
|title=Discrete dipole approximation for scattering calculations
|journal=J. Opt. Soc. Am. A
|volume=11
|pages=1491–1499
|year=1994
|bibcode = 1994JOSAA..11.1491D
|issue=4
}}</ref>
 
 
 
<ref name=edalatpour2015>{{Cite journal
|doi = 10.1103/PhysRevE.91.063307
|pmid = 26172822
|volume = 91
|issue = 6
|pages = 063307
|author1 = S. Edalatpour |author2 = M. Čuma |author3 = T. Trueax |author4 = R. Backman |author5 = M. Francoeur
|title = Convergence analysis of the thermal discrete dipole approximation
|journal = Phys. Rev. E
|year = 2015
|bibcode = 2015PhRvE..91f3307E
|arxiv = 1502.02186
|s2cid = 21556373
}}</ref>
 
<ref name=geuquet2010>{{Cite journal
|doi = 10.1016/j.ultramic.2010.01.013
|volume = 110
|issue = 8
|pages = 1075–1080
|author1 = N. Geuquet |author2 = L. Henrard
|title = EELS and optical response of a noble metal nanoparticle in the frame of a discrete dipole approximation
|journal = Ultramicroscopy
|year= 2010
}}</ref>
 
<ref name=groth2020>{{Cite journal
|title=Accelerating the discrete dipole approximation via circulant preconditioning
|author1=S. P. Groth |author2=A.G. Polimeridis |author3=J.K. White
|journal=J. Quant. Spectrosc. Radiat. Transfer
|volume=240
|article-number=106689
|year=2020|doi=10.1016/j.jqsrt.2019.106689
|bibcode=2020JQSRT.24006689G
|s2cid=209969404 }}
</ref>
 
 
 
<ref name=loke2011>{{Cite journal
|doi = 10.1016/j.jqsrt.2011.03.012
|volume = 112
|issue = 11
|pages = 1711–1725
|author = V. L. Y. Loke |author2 = P. M. Mengüç |author3 = Timo A. Nieminen
|title = Discrete dipole approximation with surface interaction: Computational toolbox for MATLAB
|journal = J. Quant. Spectrosc. Radiat. Transfer
|year = 2011
|bibcode = 2011JQSRT.112.1711L
}}</ref>
 
 
<ref name=mcdonald2009>{{Cite journal
|doi = 10.1177/1094342008097914
|volume = 23
|issue = 1
|pages = 42–61
|author1=J. McDonald |author2=A. Golden |author3=G. Jennings
|title = OpenDDA: a novel high-performance computational framework for the discrete dipole approximation
|journal = Int. J. High Perf. Comp. Appl.
|year = 2009
|arxiv = 0908.0863
|bibcode = 2009arXiv0908.0863M
|s2cid = 10285783
}}</ref>
 
<ref name=mcdonald2007a>{{Cite thesis
|author = J. McDonald
|type = PhD
|title = OpenDDA - a novel high-performance computational framework for the discrete dipole approximation
|publisher = National University of Ireland
|place = Galway
|year = 2007
|url = https://github.com/drjmcdonald/OpenDDA/blob/main/thesis_phd_OpenDDA_2007.pdf
}}</ref>
 
<ref name=nebeker1998>{{Cite thesis
|author = B. M. Nebeker
|type = PhD
|title = Modeling of light scattering from features above and below surfaces using the discrete-dipole approximation
|publisher = Arizona State University
|place = Tempe, AZ, USA
|year = 1998
}}</ref>
 
<ref name=mackowski2002>{{Cite journal
|doi = 10.1364/JOSAA.19.000881
|volume = 19
|issue = 5
|pages = 881–893
|author = D. W. Mackowski
|title = Discrete dipole moment method for calculation of the T matrix for nonspherical particles
|journal = J. Opt. Soc. Am. A
|year = 2002
|pmid = 11999964
|bibcode = 2002JOSAA..19..881M
}}</ref>
 
<ref name=mcmahon2006>{{Cite thesis
|author = M. D. McMahon
|type = PhD
|title = Effects of geometrical order on the linear and nonlinear optical properties of metal nanoparticles
|publisher = Vanderbilt University
|place = Nashville, TN, USA
|year = 2006
|url = http://etd.library.vanderbilt.edu/ETD-db/available/etd-09012006-153819/unrestricted/MatthewMcMahonDissertation.pdf
}}</ref>
 
 
 
<ref name=penttila2007>{{cite journal
| last1=Penttilä | first1=Antti | last2=Zubko | first2=Evgenij | last3=Lumme | first3=Kari | last4=Muinonen | first4=Karri | last5=Yurkin | first5=Maxim A. | last6=Draine | first6=Bruce | last7=Rahola | first7=Jussi | last8=Hoekstra | first8=Alfons G. | last9=Shkuratov | first9=Yuri |display-authors=5
|title=Comparison between discrete dipole implementations and exact techniques
|journal=J. Quant. Spectrosc. Radiat. Transfer
|publisher=Elsevier BV
|volume=106
|issue=1–3
|year=2007
|doi=10.1016/j.jqsrt.2007.01.026
|pages=417–436
|url = https://scattering.ru/papers/Penttila%20et%20al.%20-%202007%20-%20Comparison%20between%20discrete%20dipole%20implementations.pdf
|bibcode=2007JQSRT.106..417P
}}</ref>
 
<ref name=schmehl1997>{{cite journal
|last1=Schmehl | first1=Roland | last2=Nebeker | first2=Brent M. | last3=Hirleman | first3=E. Dan
|title=Discrete-dipole approximation for scattering by features on surfaces by means of a two-dimensional fast Fourier transform technique
|journal=J. Opt. Soc. Am. A
| publisher=The Optical Society
| volume=14
| issue=11
| date=1997-11-01
| doi=10.1364/josaa.14.003026
| pages=3026–3036
| bibcode=1997JOSAA..14.3026S
}}</ref>
 
<ref name=sha2011>{{Cite journal
|doi = 10.1364/OE.19.015908 |doi-access = free
|pmid = 21934954
|volume = 19
|issue = 17
|pages = 15908–15918
|author1=W. E. I. Sha |author2=W. C. H. Choy |author3=Y. P. Chen |author4=W. C. Chew
|title = Optical design of organic solar cell with hybrid plasmonic system
|journal = Opt. Express
|year = 2011
|bibcode = 2011OExpr..1915908S
}}</ref>
 
 
 
 
 
<ref name=zimmermann2012>{{Cite journal
|doi = 10.2351/1.4719936
|volume = 24
|issue = 4
|pages = 042010
|author1=M. Zimmermann |author2=A. Tausendfreund |author3=S. Patzelt |author4=G. Goch |author5=S. Kieß |author6=M. Z. Shaikh |author7=M. Gregoire |author8=S. Simon
|title = In-process measuring procedure for sub-100 nm structures
|journal = J. Laser Appl.
|year = 2012
|bibcode = 2012JLasA..24d2010Z
|doi-access=free}}</ref>
 
 
 
<ref name=Yurkin2007a>{{cite journal
|title=The discrete dipole approximation: an overview and recent developments
|author1=M. A. Yurkin |author2=A. G. Hoekstra
|arxiv=0704.0038
|journal= J. Quant. Spectrosc. Radiat. Transfer
|year=2007
|doi=10.1016/j.jqsrt.2007.01.034
|pages=558–589
|volume=106
|issue=1–3
|url=https://scattering.ru/papers/Yurkin%20and%20Hoekstra%20-%202007%20-%20The%20discrete%20dipole%20approximation%20an%20overview%20and.pdf
|bibcode = 2007JQSRT.106..558Y
|s2cid=119572857
}}</ref>
 
 
 
<ref name=yurkin2007b>{{Cite journal
|doi = 10.1016/j.jqsrt.2007.01.033
|volume = 106
|issue = 1–3
|pages = 546–557
|author1=M. A. Yurkin |author2=V. P. Maltsev |author3=A. G. Hoekstra
|title = The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength
|journal = J. Quant. Spectrosc. Radiat. Transfer
|year = 2007
|url = https://scattering.ru/papers/Yurkin%20et%20al.%20-%202007%20-%20The%20discrete%20dipole%20approximation%20for%20simulation%20o.pdf
|bibcode = 2007JQSRT.106..546Y
|arxiv = 0704.0037
|s2cid = 119574693
}}</ref>
 
<ref name=yurkin2011>{{Cite journal
|doi = 10.1016/j.jqsrt.2011.01.031
|volume = 112
|issue = 13
|pages = 2234–2247
|author1=M. A. Yurkin |author2=A. G. Hoekstra
|title = The discrete-dipole-approximation code ADDA: capabilities and known limitations
|journal = J. Quant. Spectrosc. Radiat. Transfer
|year = 2011
|url = https://scattering.ru/papers/Yurkin%20and%20Hoekstra%20-%202011%20-%20The%20discrete-dipole-approximation%20code%20ADDA%20capab.pdf
|bibcode = 2011JQSRT.112.2234Y
}}</ref>
 
<ref name=matlab2021>{{Cite journal
|doi = 10.1016/j.jqsrt.2020.107501
|volume = 262
|article-number = 107501
|author1 = M. Shabaninezhad |author2 = M. G. Awan |author3 = G. Ramakrishna
|title = MATLAB package for discrete dipole approximation by graphics processing unit: Fast Fourier Transform and Biconjugate Gradient
|journal = J. Quant. Spectrosc. Radiat. Transfer
|year = 2021
|bibcode = 2021JQSRT.26207501S
|s2cid = 233839571
}}</ref>
 
<ref name=chaumet2021>{{Cite journal
|doi = 10.1364/JOSAA.432685 |doi-access = free
|volume = 38
|issue = 12
|pages = 1841–1852
|author1 = P. C. Chaumet |author2 = D. Sentenac |author3 = G. Maire |author4 = T. Zhang |author5 = A. Sentenac
|title = IFDDA, an easy-to-use code for simulating the field scattered by 3D inhomogeneous objects in a stratified medium: tutorial
|journal = J. Opt. Soc. Am. A
|year = 2021
|bibcode = 2021JOSAA..38.1841C
}}</ref>
 
<ref name=cdda2021>{{Cite journal
|doi = 10.1364/OE.434061 |doi-access = free
|volume = 29
|issue = 19
|pages = 30020–30034
|author1 = S. A. Rosales |author2 = P. Albella |author3 = F. González |author4 = Y. Gutierrez |author5 = F. Moreno
|title = CDDA: extension and analysis of the discrete dipole approximation for chiral systems
|journal = Opt. Express
|year = 2021
|pmid = 34614734
|bibcode = 2021OExpr..2930020R
|hdl = 10902/24774
|hdl-access = free
}}</ref>
 
 
<ref name="Xu2025">{{cite journal |last1=Xu |first1=D. |last2=Tuersun |first2=P. |last3=Li |first3=S. |last4=Wang |first4=M. |last5=Jiang |first5=L. |year=2025 |title=CPDDA: A Python Package for Discrete Dipole Approximation Accelerated by CuPy |journal=Nanomaterials |volume=15 |issue=7 |pages=500 |doi=10.3390/nano15070500 |pmid=40214545 |pmc=11990789 |doi-access=free }}</ref>
 
 
 
}}
 
{{DEFAULTSORT:Discrete Dipole Approximation}}
[[Category:Computational science]]
[[Category:Electrodynamics]]
[[Category:Scattering, absorption and radiative transfer (optics)]]
[[Category:Scattering]]
[[Category:Scattering, absorption and radiative transfer (optics)]]
[[Category:Computational electromagnetics]]