Exponential-logarithmic distribution: Difference between revisions

Content deleted Content added
m Fix links to disambiguation page Mode
fix dead link
 
(17 intermediate revisions by 15 users not shown)
Line 1:
{{Short description|Family of lifetime distributions with decreasing failure rate}}
In [[probability theory]] and [[statistics]], the '''exponential-logarithmic (EL) distribution''' is a family of lifetime [[probability distribution|distributions]] with
{{Infobox probability distribution
decreasing [[failure rate]], defined on the interval&nbsp;(0,&nbsp;∞). This distribution is [[Parametric family|parameterized]] by two parameters <math>p\in(0,1)</math> and <math>\beta >0</math>.
| name = <CAPTION>Exponential-Logarithmic distribution (EL)</CAPTION>
 
| type = continuous
<TABLE class="infobox bordered wikitable"
| pdf_image = <TD colSpan=2>[[File:Pdf EL.png|thumb|center|300px|Probability density function]]</TD></TR>
style="FONT-SIZE: 95%; MARGIN-BOTTOM: 0.5em; MARGIN-LEFT: 1em; WIDTH: 320px">
| cdf_image =
<CAPTION>Exponential-Logarithmic distribution (EL)</CAPTION>
| notation =
<TR style="TEXT-ALIGN: center">
| parameters = <math>p\in (0,1)</math><br><math>\beta >0</math>
<TD colSpan=2>[[File:Pdf EL.png|thumb|center|300px|Probability density function]]</TD></TR>
| support <TD> = <math>x\in([0,\infty)</math></TD></TR>
<TR style="TEXT-ALIGN: center">
| pdf <TD> = <math>\frac{1}{-\ln p} \times \frac{\ln(1-beta(1-p) e^{-\beta x})}{1-(1-p) e^{-\lnbeta px}}</math></TD></TR>
<TD colSpan=2>[[File:Hazard EL.png|thumb|center|300px|Hazard function]]</TD></TR>
| cdf <TD> = <math>1-\frac{\text{polylog}ln(1-(2,1-p)} e^{-\beta x})}{\ln p}</math></TD></TR>
<TR vAlign=top>
| mean <TD> = <math>-\frac{\lntext{polylog}(2,1+\sqrt{-p})}{\beta\ln p}</math></TD></TR>
<TH>Parameters</TH>
| median <TD><SPAN> = <math>p\in frac{\ln(0,1+\sqrt{p})</math></SPAN><BR><SPAN> <math>}{\beta >0}</math></SPAN></TD></TR>
| mode = 0
<TR>
| variance <TD>= <math>-\frac{2 \text{polylog}(3,1-p)}{\beta^2\ln p}</math><br> <math>-\frac{ \text{polylog}^2(2,1-p)}{\beta^2\ln^2 p}</math></TD></TR>
<TH>Support</TH>
| skewness =
<TD><math>x\in(0,\infty)</math></TD></TR>
| kurtosis =
<TR>
| entropy =
<TH>Probability density function (pdf)</TH>
| mgf <TD> = <math>-\frac{\beta(1-p)}{-\ln p (\beta-t)} \timestext{hypergeom}_{2,1} </math><br> <math>([1,\frac{\beta(1-p) e^t}{\beta}],[\frac{2\beta-t}{\beta}],1-p)</math>
| cf =
x}}{1-(1-p) e^{-\beta x}}</math></TD></TR>
| pgf =
<TR>
| fisher =
<TH>Cumulative distribution function (cdf)</TH>
}}
<TD><math>1-\frac{\ln(1-(1-p) e^{-\beta x})}{\ln p}</math></TD></TR>
In [[probability theory]] and [[statistics]], the '''exponentialExponential-logarithmicLogarithmic (EL) distribution''' distribution is a family of lifetime [[probability distribution|distributions]] with
<TR>
decreasing [[failure rate]], defined on the interval&nbsp;([0,&nbsp;∞). This distribution is [[Parametric family|parameterized]] by two parameters <math>p\in(0,1)</math> and <math>\beta >0</math>.
<TH>Mean</TH>
<TD><math>-\frac{\text{polylog}(2,1-p)}{\beta\ln p}</math></TD></TR>
<TR>
<TH>Median</TH>
<TD><math>\frac{\ln(1+\sqrt{p})}{\beta}</math></TD></TR>
<TR>
<TH>Mode</TH>
<TD>0</TD></TR>
<TR>
<TH>Variance</TH>
<TD><math>-\frac{2 \text{polylog}(3,1-p)}{\beta^2\ln p}</math><br> <math>-\frac{ \text{polylog}^2(2,1-p)}{\beta^2\ln^2 p}</math></TD></TR>
<TR>
<TH>Skewness</TH>
<TD>&nbsp;</TD></TR>
<TR>
<TH>Excess kurtosis</TH>
<TD>&nbsp;</TD></TR>
<TR>
<TH>Moment-generating function (mgf)</TH>
<TD><math>-\frac{\beta(1-p)}{\ln p (\beta-t)} \text{hypergeom}_{2,1} </math><br> <math>([1,\frac{\beta-t}{\beta}],[\frac{2\beta-t}{\beta}],1-p)</math></TD></TR>
<TR>
<TH>Characteristic function</TH>
<TD>&nbsp;</TD></TR>
</TABLE>
 
== Introduction ==
 
The study of lengths of the lives of organisms, devices, materials, etc., is of major importance in the [[biological]] and [[engineering]] sciences. In general, the lifetime of a device is expected to exhibit decreasing failure rate (DFR) when its behavior over time is characterized by 'work-hardening' (in engineering terms) or 'immunity' (in biological terms).
 
The exponential-logarithmic model, together with its various properties, are studied by Tahmasbi and Rezaei (2008).<ref name="tahmasbi2008">Tahmasbi, R., Rezaei, S., (2008), "A two-parameter lifetime distribution with decreasing failure rate", ''Computational Statistics and Data Analysis'', 52 (8), 3889-3901. {{doi|10.1016/j.csda.2007.12.002}} </ref>
This model is obtained under the concept of population heterogeneity (through the process of
compounding).
 
== Properties of the distribution ==
 
=== Distribution ===
 
Line 96 ⟶ 74:
 
=== The survival, hazard and mean residual life functions ===
<TD colSpan=2>[[File:Hazard EL.png|thumb|center|300px|Hazard function]]</TD></TR>
 
The [[survival function]] (also known as the reliability
function) and [[hazard function]] (also known as the failure rate
Line 119 ⟶ 97:
 
== Estimation of the parameters ==
To estimate the parameters, the [[Expectation-maximization algorithm|EM algorithm]] is used. This method is discussed by Tahmasbi and Rezaei (2008).<ref name="tahmasbi2008"/>. The EM iteration is given by
 
: <math>\beta^{(h+1)} = n \left( \sum_{i=1}^n\frac{x_i}{1-(1-p^{(h)})e^{-\beta^{(h)}x_i}} \right)^{-1},</math>
Line 125 ⟶ 103:
: <math>p^{(h+1)}=\frac{-n(1-p^{(h+1)})} { \ln( p^{(h+1)}) \sum_{i=1}^n
\{1-(1-p^{(h)})e^{-\beta^{(h)} x_i}\}^{-1}}.</math>
 
 
==Related distributions==
The EL distribution has been generalized to form the Weibull-logarithmic distribution.<ref>Ciumara1Ciumara, Roxana; Preda2Preda, Vasile (2009) [httphttps://www.vgtuproquest.ltcom/leidiniaiopenview/leidykla7f1efa684243ce36231867620f09373a/ASMDA_2009/PDF/16_sec_081_Ciumara_The_Weibull.pdf1 "The Weibull-logarithmic distribution in lifetime analysis and its properties"]. In: L. Sakalauskas, C. Skiadas and
E. K. Zavadskas (Eds.) [http://www.vgtu.lt/leidiniai/leidykla/ASMDA_2009/ ''Applied Stochastic Models and Data Analysis''] {{Webarchive|url=https://web.archive.org/web/20110518043330/http://www.vgtu.lt/leidiniai/leidykla/ASMDA_2009/ |date=2011-05-18 }}, The XIII International Conference, Selected papers. Vilnius, 2009 {{ISBN |978-9955-28-463-5}}</ref>
 
If ''X'' is defined to be the [[random variable]] which is the minimum of ''N'' independent realisations from an [[exponential distribution]] with rate paramerterparameter ''&beta;'', and if ''N'' is a realisation from a [[logarithmic distribution]] (where the parameter ''p'' in the usual parameterisation is replaced by {{nowrap|1=(1&nbsp;&minus;&nbsp;''p'')}}), then ''X'' has the exponential-logarithmic distribution in the parameterisation used above.
 
==References==
{{Reflist}}
 
{{ProbDistributions|continuous-semi-infinite}}
 
[[Category:Continuous distributions]]