Bulirsch–Stoer algorithm: Difference between revisions

Content deleted Content added
updated existing ref
 
(9 intermediate revisions by 8 users not shown)
Line 1:
In [[numerical analysis]], the '''Bulirsch–Stoer algorithm''' is a method for the [[numerical ordinary differential equations|numerical solution of ordinary differential equations]] which combines three powerful ideas: [[Richardson extrapolation]], the use of [[rational function extrapolation]] in Richardson-type applications, and the [[modified midpoint method]],<ref>{{Cite web|url=http://www.xmds.org/bulirschStoer.html|title = Modified Midpoint Method — XMDS2 3.1.0 documentation}}</ref> to obtain numerical solutions to [[ordinary differential equation|ordinary differential equations]]s (ODEs) with high accuracy and comparatively little computational effort. It is named after [[Roland Bulirsch]] and [[Josef Stoer]]. It is sometimes called the '''Gragg–Bulirsch–Stoer (GBS) algorithm''' because of the importance of a result about the error function of the modified midpoint method, due to [[William B. Gragg]].
 
==Underlying ideas==
Line 12:
 
==References==
{{Reflist}}
 
* {{Citation | last1=Deuflhard | first1=Peter | title=Order and stepsize control in extrapolation methods | doi=10.1007/BF01418332 | year=1983 | journal=Numerische Mathematik | issn=0029-599X | volume=41 | issue=3 | pages=399–422| s2cid=121911947 }}.
* {{Citation | last1=Hairer | first1=Ernst | last2=Nørsett | first2=Syvert Paul | last3=Wanner | first3=Gerhard | title=Solving ordinary differential equations I: Nonstiff problems | publisher=[[Springer-Verlag]] | ___location=Berlin, New York | isbn=978-3-540-56670-0 | year=1993}}.
*{{Cite book | last1=Press | first1=WH | last2=Teukolsky | first2=SA | last3=Vetterling | first3=WT | last4=Flannery | first4=BP | year=2007 | title=Numerical Recipes: The Art of Scientific Computing | edition=3rd | publisher=Cambridge University Press | publication-place___location=New York | isbn=978-0-521-88068-8 | chapter=Section 17.3. Richardson Extrapolation and the Bulirsch-Stoer Method | chapter-url=http://apps.nrbook.com/empanel/index.html#pg=921 | access-date=2011-08-17 | archive-date=2011-08-11 | archive-url=https://web.archive.org/web/20110811154417/http://apps.nrbook.com/empanel/index.html#pg=921 | url-status=dead }}
* {{Citation | last1=Shampine | first1=Lawrence F. | last2=Baca | first2=Lorraine S. | title=Smoothing the extrapolated midpoint rule | doi=10.1007/BF01390211 | year=1983 | journal=Numerische Mathematik | issn=0029-599X | volume=41 | issue=2 | pages=165–175| s2cid=121097742 }}.
 
==External links==
* [http://www.unige.ch/~hairer/prog/nonstiff/odex.f ODEX.F], implementation of the Bulirsch–Stoer algorithm by Ernst Hairer and Gerhard Wanner (for other routines and license conditions, see their [http://www.unige.ch/~hairer/software.html Fortran and Matlab Codes] page).
* [https://www.boost.org/doc/libs/1_55_0/boost/numeric/odeint/stepper/bulirsch_stoer.hpp BOOST library], implementation in C++.
* [https://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/org/apache/commons/math3/ode/nonstiff/GraggBulirschStoerIntegrator.html Apache Commons Math], implementation in Java.
 
[[Category:{{Numerical integration (quadrature)]]integrators}}
 
{{DEFAULTSORT:Bulirsch-Stoer algorithm}}
[[Category:Numerical integration]]