Content deleted Content added
Citation bot (talk | contribs) Altered isbn. Upgrade ISBN10 to 13. | Use this bot. Report bugs. | Suggested by Awkwafaba | #UCB_webform 444/500 |
|||
(10 intermediate revisions by 7 users not shown) | |||
Line 1:
|title=Interpolation and Approximation with Splines and Fractals
|first=Peter|last=Massopust
|publisher= Oxford University Press, USA
|year=2010
|isbn=978-0-19-533654-2
|page=46
}}</ref> with exponent <math>n</math> is defined as
▲Given a function ''f'' the '''truncated power function''' is defined as
0 &:\ x \le 0.
\end{cases}
</math>
In particular,
▲:<math>f_+^n :=
:<math>x_+ =
▲\left\{\begin{matrix}
\begin{cases}
▲f^n &\mbox{if}\ f \ge 0 \\
0 &:\ x \le 0.
\end{cases}
</math>
and interpret the exponent as conventional [[power function|power]].
==
* Truncated power functions can be used for construction of [[B-spline]]s.
:<math>\chi_{(a,b]}(x) = (b-x)_+^0 - (a-x)_+^0</math>▼
* <math>x \mapsto x_+^0</math> is the [[Heaviside function]].
▲
* Truncated power functions are [[refinable function|refinable]].
== See also ==
* [[Macaulay brackets]]
==External links==
*[http://mathworld.wolfram.com/TruncatedPowerFunction.html Truncated Power Function on MathWorld]
==References==
[[Category:Numerical analysis]]▼
<references/>
▲[[Category:Numerical analysis]]
|