Content deleted Content added
m r2.7.1) (Robot: Adding he:פונקציה סימטרית |
→See also: Exchangeable random variables |
||
(49 intermediate revisions by 28 users not shown) | |||
Line 1:
{{Short description|Function that is invariant under all permutations of its variables}}
{{About|functions that are invariant under all permutations of their variables|the generalization of symmetric polynomials to infinitely many variables (in algebraic combinatorics)|ring of symmetric functions|symmetric functions on elements of a vector space |symmetric tensor}}
In [[mathematics]], a [[Function (mathematics)|function]] of <math>n</math> variables is '''symmetric''' if its value is the same no matter the order of its [[Argument of a function|arguments]]. For example, a function <math>f\left(x_1,x_2\right)</math> of two arguments is a symmetric function if and only if <math>f\left(x_1,x_2\right) = f\left(x_2,x_1\right)</math> for all <math>x_1</math> and <math>x_2</math> such that <math>\left(x_1,x_2\right)</math> and <math>\left(x_2,x_1\right)</math> are in the [[Domain of a function|___domain]] of <math>f.</math> The most commonly encountered symmetric functions are [[polynomial function]]s, which are given by the [[symmetric polynomial]]s.
A related notion is [[alternating polynomial]]s, which change sign under an interchange of variables. Aside from polynomial functions, [[Symmetric tensor|tensors]] that act as functions of several vectors can be symmetric, and in fact the space of symmetric <math>k</math>-tensors on a [[vector space]] <math>V</math> is [[isomorphic]] to the space of [[homogeneous polynomials]] of degree <math>k</math> on <math>V.</math> Symmetric functions should not be confused with [[even and odd functions]], which have a different sort of symmetry.
== Symmetrization ==
{{main|Symmetrization}}
Given any function
== Examples==
<ul>
<li>Consider the [[Real number|real]] function
<math display=block>f(x_1,x_2,x_3) = (x-x_1)(x-x_2)(x-x_3).</math>
By definition, a symmetric function with <math>n</math> variables has the property that
<math display=block>f(x_1,x_2,\ldots,x_n) = f(x_2,x_1,\ldots,x_n) = f(x_3,x_1,\ldots,x_n,x_{n-1}), \quad \text{ etc.}</math>
In general, the function remains the same for every [[permutation]] of its variables. This means that, in this case,
<math display=block>(x-x_1)(x-x_2)(x-x_3) = (x-x_2)(x-x_1)(x-x_3) = (x-x_3)(x-x_1)(x-x_2)</math>
and so on, for all permutations of <math>x_1, x_2, x_3.</math>
</li>
<li>Consider the function
<math display=block>f(x,y) = x^2 + y^2 - r^2.</math>
If <math>x</math> and <math>y</math> are interchanged the function becomes
<math display=block>f(y,x) = y^2 + x^2 - r^2,</math>
which yields exactly the same results as the original <math>f(x, y).</math>
</li>
<li>Consider now the function
<math display=block>f(x,y) = ax^2+by^2-r^2.</math>
If <math>x</math> and <math>y</math> are interchanged, the function becomes
<math display=block>f(y,x) = ay^2 + bx^2 - r^2.</math>
This function is not the same as the original if <math>a \neq b,</math> which makes it non-symmetric.
</li>
</ul>
== Applications ==
=== U-statistics ===
{{main|U-statistic}}
In [[statistics]], an
==See also==
* {{annotated link|Alternating polynomial}}
* [[Ring of symmetric functions]]▼
* {{annotated link|Elementary symmetric polynomial}}
* [[Quasisymmetric function]]▼
* {{annotated link|Even and odd functions}}
* {{annotated link|Exchangeable random variables}}
* {{annotated link|Symmetrization}}
* {{annotated link|Vandermonde polynomial}}
==References==
[[Category:Symmetric functions| ]]▼
{{reflist}}
{{reflist|group=note}}
* [[F. N. David]], [[M. G. Kendall]] & D. E. Barton (1966) ''Symmetric Function and Allied Tables'', [[Cambridge University Press]].
* Joseph P. S. Kung, [[Gian-Carlo Rota]], & [[Catherine Yan|Catherine H. Yan]] (2009) ''[[Combinatorics: The Rota Way]]'', §5.1 Symmetric functions, pp 222–5, Cambridge University Press, {{isbn|978-0-521-73794-4}}.
{{Tensors}}
[[Category:Combinatorics]]
▲[[Category:Symmetric functions| ]]
[[Category:Properties of binary operations]]
|