Content deleted Content added
Luizpuodzius (talk | contribs) |
Citation bot (talk | contribs) Misc citation tidying. | Use this bot. Report bugs. | #UCB_CommandLine |
||
(21 intermediate revisions by 17 users not shown) | |||
Line 1:
{{Short description|Sub-field of mathematics}}
In [[mathematics]], a '''modular invariant''' of a [[group (mathematics)|group]] is an invariant of a [[finite group]] [[
==Dickson invariant==
When ''G'' is the finite [[general linear group]] GL<sub>''n''</sub>('''F'''<sub>''q''</sub>) over the [[finite field]] '''F'''<sub>''q''</sub> of order a [[prime power]] ''q'' acting on the [[ring (mathematics)|ring]] '''F'''<sub>''q''</sub>[''X''<sub>1</sub>, ...,''X''<sub>''n''</sub>] in the natural way, {{harvtxt|Dickson|1911}} found a complete set of invariants as follows. Write [''e''<sub>1</sub>, ..., ''e''<sub>''n''</sub>] for the [[determinant]] of the [[matrix (mathematics)|matrix]] whose entries are ''X''{{su|b=''i''|p=''q''<sup>''e''<sub>''j''</sub></sup>}}, where ''e''<sub>1</sub>, ..., ''e''<sub>''n''</sub> are non-negative
:<math>\begin{vmatrix} x_1 &
Then under the action of an element ''g'' of GL<sub>''n''</sub>('''F'''<sub>''q''</sub>) these determinants are all multiplied by det(''g''), so they are all invariants of SL<sub>''n''</sub>('''F'''<sub>''p''</sub>) and the ratios [''e''<sub>1</sub>, ...,''e''<sub>''n''</sub>]/[0,1,...,''n''−1] are invariants of GL<sub>''n''</sub>('''F'''<sub>''q''</sub>), called '''Dickson invariants'''. Dickson proved that the full ring of invariants '''F'''<sub>''q''</sub>[''X''<sub>1</sub>, ...,''X''<sub>''n''</sub>]<sup>GL<sub>''n''</sub>('''F'''<sub>''q''</sub>)</sup> is a polynomial algebra over the ''n'' Dickson invariants [0,1,...,''i''−1,''i''+1,...,''n'']/[0,1,...,''n''−1] for ''i''=0, 1, ..., ''n''−1.▼
▲Then under the action of an element ''g'' of GL<sub>''n''</sub>('''F'''<sub>''q''</sub>) these determinants are all multiplied by det(''g''), so they are all invariants of SL<sub>''n''</sub>('''F'''<sub>''
{{harvtxt|Steinberg|1987}} gave a shorter proof of Dickson's theorem.
The matrices [''e''<sub>1</sub>, ..., ''e''<sub>''n''</sub>] are divisible by all non-zero linear forms in the variables ''X''<sub>''i''</sub> with coefficients in the finite field '''F'''<sub>''q''</sub>. In particular the [[Moore determinant over a finite field|Moore determinant]] [0, 1, ..., ''n''&
==See also==
*[[
==References==
*{{Citation | last1=Dickson | first1=Leonard Eugene | author1-link=Leonard Eugene Dickson | title=A Fundamental System of Invariants of the General Modular Linear Group with a Solution of the Form Problem | jstor=1988736
*{{Citation | last1=Dickson | first1=Leonard Eugene | author1-link=Leonard Eugene Dickson | title=On invariants and the theory of numbers |
*{{Citation | last1=Rutherford | first1=Daniel Edwin | authorlink=Daniel Edwin Rutherford | title=Modular invariants |
*{{Citation | last1=Sanderson | first1=Mildred | authorlink=Mildred Sanderson | title=Formal Modular Invariants with Application to Binary Modular Covariants | jstor=1988702
*{{Citation | last1=Steinberg | first1=Robert | authorlink=Robert Steinberg | title=On Dickson's theorem on invariants | url=http://repository.dl.itc.u-tokyo.ac.jp/dspace/bitstream/2261/1682/1/jfs340309.pdf | mr=927606 | year=1987 | journal=Journal of the Faculty of Science. University of Tokyo. Section IA. Mathematics | issn=0040-8980 | volume=34 | issue=3 | pages=699–707 | access-date=2010-12-02 | archive-url=https://web.archive.org/web/20120305205421/http://repository.dl.itc.u-tokyo.ac.jp/dspace/bitstream/2261/1682/1/jfs340309.pdf | archive-date=2012-03-05 | url-status=dead }}
{{DEFAULTSORT:Modular Invariant Of A Group}}
|