Content deleted Content added
←Created page with 'A '''distortion function''' <math>g: [0,1] \to [0,1]</math> is a non-decreasing function such that <math>g(0) = 0</math> and <math>g(1) = 1</math>. The '''d...' |
Citation bot (talk | contribs) Add: s2cid. | Use this bot. Report bugs. | Suggested by Abductive | #UCB_webform 1327/3850 |
||
(20 intermediate revisions by 17 users not shown) | |||
Line 1:
{{Technical|date=November 2021}}
A '''distortion function''' in [[mathematics]] and [[statistics]], for example, <math>g: [0,1] \to [0,1]</math>, is a [[non-decreasing function]] such that <math>g(0) = 0</math> and <math>g(1) = 1</math>. The '''dual distortion function''' is <math>\tilde{g}(x) = 1 - g(1-x)</math>.<ref name="PropertiesDRM">{{Cite journal | last1 = Balbás | first1 = A. | last2 = Garrido | first2 = J. | last3 = Mayoral | first3 = S. | doi = 10.1007/s11009-008-9089-z | title = Properties of Distortion Risk Measures | journal = Methodology and Computing in Applied Probability | volume = 11 | issue = 3 | pages = 385 | year = 2008 | hdl = 10016/14071 | s2cid = 53327887 | hdl-access = free }}</ref><ref name="Wirch">{{cite web|title=Distortion Risk Measures: Coherence and Stochastic Dominance|author=Julia L. Wirch|author2=Mary R. Hardy|url=http://pascal.iseg.utl.pt/~cemapre/ime2002/main_page/papers/JuliaWirch.pdf|
Given a [[probability space]] <math>(\Omega,\mathcal{F},\mathbb{P})</math>, then for any [[random variable]] <math>X</math> and any distortion function <math>g</math> we can define a new [[probability measure]] <math>\mathbb{Q}</math> such that for any <math>A \in \mathcal{F}</math> it follows that
Line 8:
{{Reflist}}
[[Category:Functions related to probability distributions]]
{{math-stub}}▼
|