Material conditional: Difference between revisions

Content deleted Content added
SyntaxPC (talk | contribs)
Removed underscores from printed link.
KenyonP (talk | contribs)
Should not be citing stack exchange
 
(795 intermediate revisions by more than 100 users not shown)
Line 1:
{{short description|Logical connective}}
In [[propositional calculus]], or logical calculus in [[mathematics]], the '''material conditional''' or the '''implies operator''' is a [[binary_relation|binary]] [[truth-functional]] [[logical operator]] yielding the form
{{Redirect|Logical conditional|other related meanings|Conditional statement (disambiguation){{!}}Conditional statement}}
{{distinguish|Material inference|Material implication (rule of inference)}}
{{Infobox logical connective
| title = Material conditional
| other titles = IMPLY
| Venn diagram = Venn1011.svg
| wikifunction = Z10329
| definition = <math>x \to y</math>
| truth table = <math>(1011)</math>
| logic gate = IMPLY_ANSI.svg
| DNF = <math>\overline{x} + y</math>
| CNF = <math>\overline{x} + y</math>
| Zhegalkin = <math>1 \oplus x \oplus xy</math>
| 0-preserving = no
| 1-preserving = yes
| monotone = no
| affine = no
| self-dual = no
}}
{{Logical connectives sidebar}}
The '''material conditional''' (also known as '''material implication''') is a [[binary operation]] commonly used in [[mathematical logic|logic]]. When the conditional symbol <math>\to</math> is [[Interpretation (logic)|interpreted]] as material implication, a formula <math> P \to Q</math> is true unless <math>P</math> is true and <math>Q</math> is false.
 
Material implication is used in all the basic systems of [[classical logic]] as well as some [[nonclassical logic]]s. It is assumed as a model of correct conditional reasoning within mathematics and serves as the basis for commands in many [[programming language]]s. However, many logics replace material implication with other operators such as the [[strict conditional]] and the [[variably strict conditional]]. Due to the [[paradoxes of material implication]] and related problems, material implication is not generally considered a viable analysis of [[conditional sentence]]s in [[natural language]].
''If'' a ''then'' c,
 
== Notation ==
where ''a'' and ''c'' are statement variables (to be replaced by any meaningful indicative sentence of the language). In a statement of this form, the first term, in this case ''a'', is called the ''[[antecedent]]'' and the second term, in this case ''c'', is called the ''[[consequent]]''. The truth of the antecedent is a [[sufficient condition]] for the truth of the consequent, while the truth of the consequent is a [[necessary condition]] for the truth of the antecedent.
In logic and related fields, the material conditional is customarily notated with an infix operator <math>\to</math>.{{sfn|Hilbert|1918}} The material conditional is also notated using the infixes <math>\supset</math> and <math>\Rightarrow</math>.{{sfn|Mendelson|2015}} In the prefixed [[Polish notation]], conditionals are notated as <math>Cpq</math>. In a conditional formula <math>p\to q</math>, the subformula <math>p</math> is referred to as the ''[[antecedent (logic)|antecedent]]'' and <math>q</math> is termed the ''[[consequent]]'' of the conditional. Conditional statements may be nested such that the antecedent or the consequent may themselves be conditional statements, as in the formula <math>(p\to q)\to(r\to s)</math>.
 
== History ==
The operator is symbolized using a right-arrow "&#8594;" (or sometimes a horseshoe "&sup;"). "If A then B" is written like this:
In ''[[Arithmetices principia, nova methodo exposita|Arithmetices Principia: Nova Methodo Exposita]]'' (1889), [[Giuseppe Peano|Peano]] expressed the proposition "If <math>A</math>, then <math>B</math>" as <math>A</math> Ɔ <math>B</math> with the symbol Ɔ, which is the opposite of C.{{sfn|Van Heijenoort|1967}} He also expressed the proposition <math>A\supset B</math> as <math>A</math> Ɔ <math>B</math>.<ref>Note that the horseshoe symbol Ɔ has been flipped to become a subset symbol ⊂.</ref>{{sfn|Nahas|2022|page=VI}}{{Citation needed|reason=Originally cited a Stack Exchange post, which is original research.|date=July 2025}} [[David Hilbert|Hilbert]] expressed the proposition "If ''A'', then ''B''" as <math>A\to B</math> in 1918.{{sfn|Hilbert|1918}} [[Bertrand Russell|Russell]] followed Peano in his ''[[Principia Mathematica]]'' (1910–1913), in which he expressed the proposition "If ''A'', then ''B''" as <math>A\supset B</math>. Following Russell, [[Gerhard Gentzen|Gentzen]] expressed the proposition "If ''A'', then ''B''" as <math>A\supset B</math>. [[Arend Heyting|Heyting]] expressed the proposition "If ''A'', then ''B''" as <math>A\supset B</math> at first but later came to express it as <math>A\to B</math> with a right-pointing arrow.<!-- check https://jeff560.tripod.com/set.html later --> [[Nicolas Bourbaki|Bourbaki]] expressed the proposition "If ''A'', then ''B''" as <math>A \Rightarrow B</math> in 1954.{{sfn|Bourbaki|1954|page=14}}<ref>{{cite web |last=Miller |first=Jeff |date=2020 |title=Earliest Uses of Symbols for Set Theory and Logic |url=https://mathshistory.st-andrews.ac.uk/Miller/mathsym/set/ |website=Maths History (University of St Andrews) |publisher=University of St Andrews |access-date=10 June 2025}}</ref>
 
==Semantics==
<math>A \to B</math>
===Truth table===
From a [[classical logic|classical]] [[semantics of logic|semantic perspective]], material implication is the [[binary operator|binary]] [[truth function]]al operator which returns "true" unless its first argument is true and its second argument is false. This semantics can be shown graphically in the following [[truth table]]:
{{2-ary truth table|1|1|0|1|<math>A \to B</math>}}
One can also consider the equivalence <math>A \to B \equiv \neg (A \land \neg B) \equiv \neg A \lor B</math>.
 
The conditionals <math>(A \to B)</math> where the antecedent <math>A</math> is false, are called "[[vacuous truth]]s".
Using the horseshoe "&sup;" symbol for implication is falling out favor due to its conflict with the superset symbol <math>\supset</math> used by the [[Algebra of sets]]. A set interpretation of "<math> A \to B</math>" is "{x| A(x) is true} <math>\subseteq</math> {x| B(x) is true}".
Examples are ...
* ... with <math>B</math> false: ''"If [[Marie Curie]] is a sister of [[Galileo Galilei]], then Galileo Galilei is a brother of Marie Curie."''
* ... with <math>B</math> true: ''"If Marie Curie is a sister of Galileo Galilei, then Marie Curie has a sibling."''
 
===Analytic tableaux===
{{further|Method of analytic tableaux}}
Formulas over the set of connectives <math>\{\to, \bot\}</math><ref>The [[well-formed formula]]s are:
# Each [[propositional variable]] is a formula.
# "<math>\bot</math>" is a formula.
# If <math>A</math> and <math>B</math> are formulas, so is <math>(A \to B)</math>.
# Nothing else is a formula.</ref> are called '''f-implicational'''.{{sfn|Franco|Goldsmith|Schlipf|Speckenmeyer|1999}} In [[classical logic]] the other connectives, such as <math>\neg</math> ([[negation]]), <math>\land</math> ([[logical conjunction|conjunction]]), <math>\lor</math> ([[disjunction]]) and <math>\leftrightarrow</math> ([[If and only if|equivalence]]), can be defined in terms of <math>\to</math> and <math>\bot</math> ([[False (logic)#False, negation and contradiction|falsity]]):<ref name="connective_needed">f-implicational formulas cannot express all valid formulas in [[Minimal logic|minimal]] (MPC) or [[intuitionistic logic|intuitionistic]] (IPC) propositional logic — in particular, <math>\lor</math> (disjunction) cannot be defined within it. In contrast, <math>\{\to, \lor, \bot \}</math> is a complete basis for MPC / IPC: from these, all other connectives (e.g., <math>\land, \neg, \leftrightarrow, \bot</math>) can be defined.</ref>
<math display="block">
\begin{align}
\neg A & \quad \overset{\text{def}}{=} \quad A \to \bot \\
A \land B & \quad \overset{\text{def}}{=} \quad (A \to (B \to \bot)) \to \bot \\
A \lor B & \quad \overset{\text{def}}{=} \quad (A \to \bot) \to B \\
A \leftrightarrow B & \quad \overset{\text{def}}{=} \quad \{(A \to B) \to [(B \to A) \to \bot]\} \to \bot \\
\end{align}
</math>
 
The validity of f-implicational formulas can be semantically established by the [[method of analytic tableaux]]. The logical rules are
==Symbolization==
:{| style="border: none; border-spacing: 1px; border-collapse: separate;"
|-
| style="vertical-align: top;" | <math>\frac{\boldsymbol{\mathsf{T}}(A \to B)}{\boldsymbol{\mathsf{F}}(A)
\quad \mid \quad \boldsymbol{\mathsf{T}}(B)}</math> || valign="top" | <math>\frac{\boldsymbol{\mathsf{F}}(A \to B)}{\begin{array}{c} \boldsymbol{\mathsf{T}}(A) \\ \boldsymbol{\mathsf{F}}(B)\end{array}}</math>
|-
|colspan="2" | <math>\boldsymbol{\mathsf{T}}(\bot)</math> : Close the branch (contradiction)<br/><math>\boldsymbol{\mathsf{F}}(\bot)</math> : Do nothing (since it just asserts no contradiction)
|}
 
<div style="margin-left: 20px;">
A common exercise for an introductory logic text to include is symbolizations. These exercises give a student a sentence or paragraph of text in ordinary language which the student has to translate into the symbolic language. This is done by recognizing the ordinary language equivalents of the logical terms, which usually include the material conditional, [[disjunction]], [[conjunction]], [[negation]], and (frequently) [[biconditional]]. More advanced logic books and later chapters of introductory volumes often add [[identity]], [[Existential quantification]], and [[Universal quantification]].
{{collapse top
| title=<span style="display:block; text-align:left; margin-left: -50px; padding-left: 0;">Example: proof of <math>p \to \neg \neg p\quad</math>, by [[method of analytic tableaux]]</span>
| bg=#ffffff | fg=#000000
}}
<pre>
F[p → ((p → ⊥) → ⊥)]
|
T[p]
F[(p → ⊥) → ⊥]
|
T[p → ⊥]
F[⊥]
┌────────┴────────┐
F[p] T[⊥]
| |
CONTRADICTION CONTRADICTION
(T[p], F[p]) (⊥ is true)
</pre>
{{collapse bottom}}
</div>
 
<div style="margin-left: 20px;">
Different phrases used to identify the material conditional in ordinary language include ''if'', ''only if'', ''given that'', ''provided that'', ''supposing that'', ''implies'', ''even if'', and ''in case''. Many of these phrases are indicators of the antecedent, but others indicate the consequent. It is important to identify the "direction of implication" correctly. For example, "A only if B" is captured by the statement
{{collapse top
| title=<span style="display:block; text-align:left; margin-left: -50px; padding-left: 0;">Example: proof of <math>\neg \neg p \to p\quad</math>, by method of analytic tableaux</span>
| bg=#ffffff | fg=#000000
}}
<pre>
F[((p → ⊥) → ⊥) → p]
|
T[(p → ⊥) → ⊥]
F[p]
┌────────┴────────┐
F[p → ⊥] T[⊥]
| |
T[p] CONTRADICTION (⊥ is true)
F[⊥]
|
CONTRADICTION (T[p], F[p])
</pre>
[[Hilbert system|Hilbert-style proofs]] can be found [[Implicational propositional calculus#An alternative axiomatization|here]] or [[Peirce's law|here]].
{{collapse bottom}}
</div>
<div style="margin-left: 20px;">
{{collapse top
| title=<span style="display:block; text-align:left; margin-left: -50px; padding-left: 0;">Example: proof of <math>(p \to q) \to ((q \to r) \to (p \to r))</math>, by method of analytic tableaux</span>
| bg=#ffffff | fg=#000000
}}
<pre>
1. F[(p → q) → ((q → r) → (p → r))]
| // from 1
2. T[p → q]
3. F[(q → r) → (p → r)]
| // from 3
4. T[q → r]
5. F[p → r]
| // from 5
6. T[p]
7. F[r]
┌────────┴────────┐ // from 2
8a. F[p] 8b. T[q]
X ┌────────┴────────┐ // from 4
9a. F[q] 9b. T[r]
X X
</pre>
A [[Hilbert system|Hilbert-style proof]] can be found [[Implicational propositional calculus#The Bernays–Tarski axiom system|here]].
{{collapse bottom}}
</div>
 
== Syntactical properties ==
A &#8594; B,
{{further|Natural deduction}}
The semantic definition by truth tables does not permit the examination of structurally identical propositional forms in various [[Formal system|logical system]]s, where different properties may be demonstrated. The language considered here is restricted to '''f-implicational formulas'''.
 
Consider the following (candidate) [[natural deduction]] rules.
but "A, if B" is correctly captured by the statement
 
{| class="wikitable"
B &#8594; A
|valign="top"| '''Implication Introduction''' (<math>\to</math>I)
 
If assuming <math>A</math> one can derive <math>B</math>, then one can conclude <math>A \to B</math>.
When doing symbolization exercises, it is often required that the student give a [[scheme of abbreviation]] that shows which sentences are replaced by which statement letters. For example, an exercise reading "Kermit is a frog only if muppets are animals" yields the solution:
 
<math>
A &#8594; B,
\frac{\begin{array}{c}
A - Kermit is a frog.
[A] \\
B - Muppets are animals.
\vdots \\
B
\end{array}}{A \to B}</math> (<math>\to</math>I)
 
<math>[A]</math> is an assumption that is discharged when applying the rule.
==Truth table==
|valign="top"| '''Implication Elimination''' (<math>\to</math>E)
 
This rule corresponds to [[modus ponens]].
The truth value of expressions involving the material conditional is defined by the following [[truth table]]:
 
<math>\frac{A \to B \quad A}{B}</math> (<math>\to</math>E)
{| class="wikitable"
 
! ''p'' !! ''q'' !! ''p'' &#8594; ''q''
 
|- align=center
<math>\frac{A \quad A \to B}{B}</math> (<math>\to</math>E)
| F || F || T
|-
|- align=center
|valign="top"| '''[[Double negation|Double Negation Elimination]]''' (<math>\neg\neg</math>E)
| F || T || T
 
|- align=center
 
| T || F || F
<math>
|- align=center
\frac{\begin{array}{c}
| T || T || T
(A \to \bot) \to \bot \\
\end{array}}{A}</math> (<math>\neg\neg</math>E)
|valign="top"| '''Falsum Elimination''' (<math>\bot</math>E)
 
From falsum (<math>\bot</math>) one can derive any formula.<br/>(ex falso quodlibet)
 
<math>\frac{\bot}{A}</math> (<math>\bot</math>E)
|}
 
* '''[[Minimal logic]]''': By limiting the [[natural deduction]] rules to ''Implication Introduction'' (<math>\to</math>I) and ''Implication Elimination'' (<math>\to</math>E), one obtains (the implicational fragment of)<ref name="connective_needed"/> minimal logic (as defined by [[Ingebrigt Johansson|Johansson]]).{{sfn|Johansson|1937}}
==Comparison with other conditional statements==
<div style="margin-left: 20px;">
The use of the operator is stipulated by logicians, and, as a result, can yield some unexpected truths. For example, any material conditional statement with a false antecedent is true. So the statement "2 is odd implies 2 is even" is true. Similarly, any material conditional with a true consequent is true. So the statement, "If pigs fly, then Paris is in France" is true.
{{collapse top
| title=<span style="display:block; text-align:left; margin-left: -50px; padding-left: 0;">Proof of <math>P \to \neg \neg P\quad</math>, within minimal logic</span>
| bg=#ffffff | fg=#000000
}}
{|
|1.{{spaces|1}}
|[ P ]
|{{spaces|1}}// Assume
|-
|2.{{spaces|1}}
|[ P → ⊥ ]
|{{spaces|1}}// Assume
|-
|3.{{spaces|1}}
|⊥
|{{spaces|1}}// <math>\to</math>E (1, 2)
|-
|4.{{spaces|1}}
|(P → ⊥) → ⊥)
|{{spaces|1}}// <math>\to</math>I (2, 3), discharging 2
|-
|5.{{spaces|1}}
|P → ((P → ⊥) → ⊥)
|{{spaces|1}}// <math>\to</math>I (1, 4), discharging 1
|}
{{collapse bottom}}
</div>
* '''[[Intuitionistic logic]]''': By adding ''Falsum Elimination'' (<math>\bot</math>E) as a rule, one obtains (the implicational fragment of)<ref name="connective_needed"/> intuitionistic logic.
:The statement <math>P \to \neg \neg P</math> is valid (already in minimal logic), unlike the reverse implication which would entail the [[law of excluded middle]].
 
* '''[[Classical logic]]''': If ''[[Double negation|Double Negation Elimination]]'' (<math>\neg\neg</math>E) is also permitted,{{refn|name="RAA"|Instead of <math>\neg\neg</math>E one can add '''[[reductio ad absurdum]]''' as a rule to obtain (full) classical logic:{{sfn|Prawitz|1965|p=21}}{{sfn|Ayala-Rincón|de Moura|2017|pp=17-24}}
:<math>
\frac{\begin{array}{c}
[A \to \bot] \\
\vdots \\
\bot
\end{array}}{A}</math> (RAA)}} the system defines (full!) classical logic.{{sfn|Prawitz|1965|p=21}}{{sfn|Ayala-Rincón|de Moura|2017|pp=17-24}}{{sfn|Tennant|1990|p=48}}
 
==A selection of theorems (classical logic)==
In [[classical logic]] material implication validates the following:
<div style="margin-left: 20px;">
{{collapse top
| title=<span style="display:block; text-align:left; margin-left: -50px; padding-left: 0;">Contraposition: <math>(\neg Q \to \neg P) \to (P \to Q)</math></span>
| bg=#ffffff | fg=#000000
}}
{|
|1.{{spaces|1}}
|[ (Q → ⊥) → (P → ⊥) ]
|{{spaces|1}}// Assume (to discharge at 9)
|-
|2.{{spaces|1}}
|[ P ]
|{{spaces|1}}// Assume (to discharge at 8)
|-
|3.{{spaces|1}}
|[ Q → ⊥ ]
|{{spaces|1}}// Assume (to discharge at 6))
|-
|4.{{spaces|1}}
|P → ⊥
|{{spaces|1}}// <math>\to</math>E (1, 3)
|-
|5.{{spaces|1}}
|⊥
|{{spaces|1}}// <math>\to</math>E (2, 4)
|-
|6.{{spaces|1}}
|(Q → ⊥) → ⊥
|{{spaces|1}}// <math>\to</math>I (3, 5) (discharging 3)
|-
|7.{{spaces|1}}
|Q
|{{spaces|1}}// <math>\neg\neg</math>E (6)
|-
|8.{{spaces|1}}
|P → Q
|{{spaces|1}}// <math>\to</math>I (2, 7) (discharging 2)
|-
|9.{{spaces|1}}
|((Q → ⊥) → (P → ⊥)) → (P → Q)
|{{spaces|1}}// <math>\to</math>I (1, 8) (discharging 1)
|}
{{collapse bottom}}
</div>
<div style="margin-left: 20px;">
{{collapse top
| title=<span style="display:block; text-align:left; margin-left: -50px; padding-left: 0;">[[Peirce's law]]: <math>((P \to Q) \to P) \to P</math></span>
| bg=#ffffff | fg=#000000
}}
{|
|1.{{spaces|1}}
|[ (P → Q) → P ]
|{{spaces|1}}// Assume (to discharge at 11)
|-
|2.{{spaces|1}}
|[ P → ⊥ ]
|{{spaces|1}}// Assume (to discharge at 9)
|-
|3.{{spaces|1}}
|[ P ]
|{{spaces|1}}// Assume (to discharge at 6)
|-
|4.{{spaces|1}}
|⊥
|{{spaces|1}}// <math>\to</math>E (2, 3)
|-
|5.{{spaces|1}}
|Q
|{{spaces|1}}// <math>\bot</math>E (4)
|-
|6.{{spaces|1}}
|P → Q
|{{spaces|1}}// <math>\to</math>I (3, 5) (discharging 3)
|-
|7.{{spaces|1}}
|P
|{{spaces|1}}// <math>\to</math>E (1, 6)
|-
|8.{{spaces|1}}
|⊥
|{{spaces|1}}// <math>\to</math>E (2, 7)
|-
|9.{{spaces|1}}
|(P → ⊥) → ⊥
|{{spaces|1}}// <math>\to</math>I (2, 8) (discharging 2)
|-
|10.{{spaces|1}}
|P
|{{spaces|1}}// <math>\neg \neg</math>E (9)
|-
|11.{{spaces|1}}
|((P → Q) → P) → P
|{{spaces|1}}// <math>\to</math>I (1, 10) (discharging 1)
|}
{{collapse bottom}}
</div>
<div style="margin-left: 20px;">
{{collapse top
| title=<span style="display:block; text-align:left; margin-left: -50px; padding-left: 0;">[[Vacuous truth|Vacuous conditional]] (IPC): <math>\neg P \to (P \to Q)</math></span>
| bg=#ffffff | fg=#000000
}}
{|
|1.{{spaces|1}}
|<math>[ P \to \bot ]</math>
|{{spaces|1}}// Assume
|-
|2.{{spaces|1}}
|<math>[ P ]</math>
|{{spaces|1}}// Assume
|-
|3.{{spaces|1}}
| <math>\bot</math>
|{{spaces|1}}// <math>\to</math>E (1, 2)
|-
|4.{{spaces|1}}
|<math>Q</math>
|{{spaces|1}}// <math>\bot</math>E (3)
|-
|5.{{spaces|1}}
|<math>P \to Q</math>
|{{spaces|1}}// <math>\to </math>I (2, 4) (discharging 2)
|-
|6.{{spaces|1}}
|<math>( P \to \bot ) \to ( P \to Q )</math>
|{{spaces|1}}// <math>\to </math>I (1, 5) (discharging 1)
|}
{{collapse bottom}}
</div>
* [[Import-Export (logic)|Import-export]]: <math>P \to (Q \to R) \equiv (P \land Q) \to R</math>
* Negated conditionals: <math>\neg(P \to Q) \equiv P \land \neg Q</math>
* Or-and-if: <math>P \to Q \equiv \neg P \lor Q</math>
* Commutativity of antecedents: <math>\big(P \to (Q \to R)\big) \equiv \big(Q \to (P \to R)\big)</math>
* [[Left distributivity]]: <math>\big(R \to (P \to Q)\big) \equiv \big((R \to P) \to (R \to Q)\big)</math>
 
Similarly, on classical interpretations of the other connectives, material implication validates the following [[Logical consequence#Semantic consequence|entailment]]s:
* Antecedent strengthening: <math>P \to Q \models (P \land R) \to Q</math>
* [[transitive relation|Transitivity]]: <math>(P \to Q) \land (Q \to R) \models P \to R</math>
* [[Simplification of disjunctive antecedents]]: <math>(P \lor Q) \to R \models (P \to R) \land (Q \to R)</math>
 
[[Tautology (logic)|Tautologies]] involving material implication include:
* [[reflexive relation|Reflexivity]]: <math>\models P \to P</math>
* [[connex relation|Totality]]: <math>\models (P \to Q) \lor (Q \to P)</math>
* [[Law of excluded middle|Conditional excluded middle]]: <math>\models (P \to Q) \lor (P \to \neg Q)</math>
 
== Discrepancies with natural language ==
 
Material implication does not closely match the usage of [[conditional sentence]]s in [[natural language]]. For example, even though material conditionals with false antecedents are [[vacuous truth|vacuously true]], the natural language statement "If 8 is odd, then 3 is prime" is typically judged false. Similarly, any material conditional with a true consequent is itself true, but speakers typically reject sentences such as "If I have a penny in my pocket, then Paris is in France". These classic problems have been called the [[paradoxes of material implication]].{{sfn|Edgington|2008}} In addition to the paradoxes, a variety of other arguments have been given against a material implication analysis. For instance, [[counterfactual conditional]]s would all be vacuously true on such an account, when in fact some are false.{{refn|For example, "If [[Janis Joplin]] were alive today, she would drive a [[Mercedes-Benz]]", see {{harvtxt|Starr|2019}}}}
 
In the mid-20th century, a number of researchers including [[Paul Grice|H. P. Grice]] and [[Frank Cameron Jackson|Frank Jackson]] proposed that [[pragmatics|pragmatic]] principles could explain the discrepancies between natural language conditionals and the material conditional. On their accounts, conditionals [[denotation|denote]] material implication but end up conveying additional information when they interact with conversational norms such as [[Cooperative principle#Grice's maxims|Grice's maxims]].{{sfn|Edgington|2008}}{{sfn|Gillies|2017}} Recent work in [[formal semantics (natural language)|formal semantics]] and [[philosophy of language]] has generally eschewed material implication as an analysis for natural-language conditionals.{{sfn|Gillies|2017}} In particular, such work has often rejected the assumption that natural-language conditionals are [[truth function]]al in the sense that the truth value of "If ''P'', then ''Q''" is determined solely by the truth values of ''P'' and ''Q''.{{sfn|Edgington|2008}} Thus semantic analyses of conditionals typically propose alternative interpretations built on foundations such as [[modal logic]], [[relevance logic]], [[probability theory]], and [[causal graph|causal models]].{{sfn|Gillies|2017}}{{sfn|Edgington|2008}}{{sfn|Von Fintel|2011}}
 
Similar discrepancies have been observed by psychologists studying conditional reasoning, for instance, by the notorious [[Wason selection task]] study, where less than 10% of participants reasoned according to the material conditional. Some researchers have interpreted this result as a failure of the participants to conform to normative laws of reasoning, while others interpret the participants as reasoning normatively according to nonclassical laws.{{sfn|Oaksford |Chater|1994}}{{sfn|Stenning|van Lambalgen|2004}}{{sfn|Von Sydow|2006}}
 
==See also==
{{Div col|colwidth=20em}}
* [[Boolean ___domain]]
* [[Boolean function]]
* [[Boolean logic]]
* [[Conditional quantifier]]
* [[Implicational propositional calculus]]
* ''[[Laws of Form]]''
* [[Logical graph]]
* [[Logical equivalence]]
* [[Material implication (rule of inference)]]
* [[Peirce's law]]
* [[Propositional calculus]]
* [[Sole sufficient operator]]
{{Div col end}}
 
===Conditionals===
* [[Corresponding conditional]]
* [[Counterfactual conditional]]
* [[Indicative conditional]]
* [[Strict conditional]]
 
== Notes ==
{{Reflist}}
 
== Bibliography ==
 
* {{Cite book |last1=Ayala-Rincón |first1=Mauricio |last2=de Moura |first2=Flávio L. C. |title=Applied Logic for Computer Scientists |date=2017 |publisher=Springer |series=Undergraduate Topics in Computer Science |isbn=978-3-319-51651-6 |doi=10.1007/978-3-319-51653-0 |url=https://link.springer.com/book/10.1007/978-3-319-51653-0 }}
 
*{{cite book |last=Bourbaki |first=N. |title=Théorie des ensembles |date=1954 |publisher=Hermann & Cie, Éditeurs |___location=Paris |page=14}}
 
*{{cite encyclopedia |first=Dorothy |last=Edgington |editor=Edward N. Zalta |year=2008 |title=Conditionals |encyclopedia=The Stanford Encyclopedia of Philosophy |edition=Winter 2008 |url=http://plato.stanford.edu/archives/win2008/entries/conditionals/}}
 
*{{cite encyclopedia|last=Von Fintel|first=Kai |editor-last1=von Heusinger |editor-first1= Klaus | editor-last2= Maienborn |editor-first2= Claudia | editor-first3=Paul |editor-last3=Portner |encyclopedia=Semantics: An international handbook of meaning |title=Conditionals |url=http://mit.edu/fintel/fintel-2011-hsk-conditionals.pdf |year=2011 |pages=1515–1538 |publisher= de Gruyter Mouton |doi=10.1515/9783110255072.1515|hdl=1721.1/95781 |isbn=978-3-11-018523-2 |hdl-access=free }}
 
*{{cite journal | doi=10.1016/S0166-218X(99)00038-4 | volume=96-97 | title=An algorithm for the class of pure implicational formulas | journal=Discrete Applied Mathematics | pages=89–106 | year=1999 | last1=Franco | first1=John | last2=Goldsmith | first2=Judy | last3=Schlipf | first3=John | last4=Speckenmeyer | first4=Ewald | last5=Swaminathan | first5=R.P. | doi-access=free}}
 
*{{cite encyclopedia |last=Gillies|first=Thony |editor-last1=Hale |editor-first1=B. | editor-last2=Wright |editor-first2=C. | editor-last3=Miller |editor-first3=A. |encyclopedia=A Companion to the Philosophy of Language |title=Conditionals |url=http://www.thonygillies.org/wp-content/uploads/2015/11/gillies-conditionals-handbook.pdf |year=2017 |pages=401–436 |publisher=Wiley Blackwell |doi=10.1002/9781118972090.ch17|isbn=9781118972090 }}
 
*{{Cite book |editor-first=Jean |editor-last=Van Heijenoort |title=From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931 |year=1967 |publisher=Harvard University Press |isbn=0-674-32449-8 |pages=84–87}}
 
*{{cite book |last=Hilbert |first=D. |title=Prinzipien der Mathematik (Lecture Notes edited by Bernays, P.) |date=1918}}
 
*{{cite journal|last= Johansson|first=Ingebrigt|author-link=Ingebrigt Johansson|year=1937|title=Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus|url=http://www.numdam.org/item/CM_1937__4__119_0|journal=[[Compositio Mathematica]]|volume=4|pages=119–136|language=de}}
 
*{{Cite book | last =Mendelson | first =Elliott | author-link =Elliott Mendelson |title=Introduction to Mathematical Logic | year=2015 | edition=6th | ___location=Boca Raton | publisher=CRC Press/Taylor & Francis Group (A Chapman & Hall Book) | isbn=978-1-4822-3778-8 | page=2 }}
 
*{{Cite web |url=https://github.com/mdnahas/Peano_Book/blob/46e27bdb5aed51c078ad99e5a78d134fd2a0c3ca/Peano.pdf |title=English Translation of 'Arithmetices Principia, Nova Methodo Exposita' |access-date=2022-08-10 |first=Michael |last=Nahas |date=25 Apr 2022 |publisher=GitHub}}
 
*{{cite journal |last1=Oaksford |first1=M. |last2=Chater |first2=N. |year=1994 |title=A rational analysis of the selection task as optimal data selection |journal=[[Psychological Review]] |volume=101 |issue=4 |pages=608–631 |doi=10.1037/0033-295X.101.4.608 |citeseerx=10.1.1.174.4085 |s2cid=2912209 }}
 
*{{cite book | last = Prawitz | first = Dag | author-link = Dag Prawitz | year = 1965 | title = Natural Deduction: A Proof-Theoretic Study | series = Acta Universitatis Stockholmiensis; Stockholm Studies in Philosophy, 3 | publisher = Almqvist & Wiksell | ___location = Stockholm, Göteborg, Uppsala | oclc = 912927896 }}
 
*{{cite encyclopedia |last=Starr |first=Will |editor-last1=Zalta |editor-first1=Edward N. |encyclopedia=The Stanford Encyclopedia of Philosophy |title=Counterfactuals |year=2019 |url=https://plato.stanford.edu/archives/fall2019/entries/counterfactuals}}
 
*{{cite journal |last1=Stenning |first1=K. |last2=van Lambalgen |first2=M. |year=2004 |title=A little logic goes a long way: basing experiment on semantic theory in the cognitive science of conditional reasoning |journal=Cognitive Science |volume=28 |issue=4 |pages=481–530 |doi=10.1016/j.cogsci.2004.02.002 |citeseerx=10.1.1.13.1854 }}
 
*{{cite thesis |last=Von Sydow |first=M. |title=Towards a Flexible Bayesian and Deontic Logic of Testing Descriptive and Prescriptive Rules |year=2006 |___location=Göttingen |publisher=Göttingen University Press |doi=10.53846/goediss-161 |s2cid=246924881 |url=https://ediss.uni-goettingen.de/handle/11858/00-1735-0000-0006-AC29-9|type=doctoralThesis |doi-access=free }}
 
*{{cite book | last = Tennant | first = Neil | title = Natural Logic | publisher = [[Edinburgh University Press]] | year = 1990 | orig-year = 1978 | edition = 1st, repr. with corrections | isbn = 0852245793 }}
 
== Further reading ==
* Brown, Frank Markham (2003), ''Boolean Reasoning: The Logic of Boolean Equations'', 1st edition, [[Kluwer]] Academic Publishers, [[Norwell, Massachusetts|Norwell]], MA. 2nd edition, [[Dover Publications]], [[Mineola, New York|Mineola]], NY, 2003.
* [[Dorothy Edgington|Edgington, Dorothy]] (2001), "Conditionals", in Lou Goble (ed.), ''The Blackwell Guide to Philosophical Logic'', [[Wiley-Blackwell|Blackwell]].
* [[W. V. Quine|Quine, W.V.]] (1982), ''Methods of Logic'', (1st ed. 1950), (2nd ed. 1959), (3rd ed. 1972), 4th edition, [[Harvard University Press]], [[Cambridge, Massachusetts|Cambridge]], MA.
* [[Robert Stalnaker|Stalnaker, Robert]], "Indicative Conditionals", ''[[Philosophia (journal)|Philosophia]]'', '''5''' (1975): 269–286.
 
==External links==
These unexpected truths arise because speakers of English (and other natural languages) are tempted to [[equivocation|equivocate]] between the material conditional and the [[indicative conditional]], or other conditional statements, like the [[counterfactual conditional]] and the [[logical biconditional |material biconditional]]. This temptation can be lessened by reading conditional statements without using the words "if" and "then". The most common way to do this is to read ''A &#8594; B'' as "it is not the case that A and/or it is the case that B" or, more simply, "A is false and/or B is true". (This [[equivalence|equivalent]] statement is captured in logical notation by <math>\neg A \vee B</math>, using negation and disjunction.)
*{{cite SEP |url-id=conditionals |title=Conditionals |last=Edgington |first=Dorothy}}
 
{{Logical connectives}}
[[Category:Logic]]
{{Common logical symbols}}
[[Category:Binary operations]]
{{Mathematical logic}}
 
[[Category:Logical connectives]]
[[mk:Материјална импликација]]
[[Category:Conditionals]]
[[nl:Logische implicatie]]
[[Category:Logical consequence]]
[[zh:实质条件]]
[[Category:Semantics]]