Content deleted Content added
RjwilmsiBot (talk | contribs) m fixing page range dashes using AWB |
m →Formal definition: {{angbr}} {{mset}} |
||
(18 intermediate revisions by 9 users not shown) | |||
Line 1:
In [[automata theory]],
==
A '''thread automaton''' consists of
* a set ''N'' of states,<ref group=note>called ''non-terminal symbols'' by Villemonte (2002), p.1r</ref>
* a set Σ of terminal symbols,
* a start state ''A''<sub>''S''</sub> ∈ ''N'',
* a final state ''A''<sub>''F''</sub> ∈ ''N'',
* a set ''U'' of path components,
* a partial function δ: ''N'' → ''U''<sup>⊥</sup>, where ''U''<sup>⊥</sup> = ''U'' ∪ {⊥} for ⊥ ∉ ''U'',
* a finite set Θ of transitions.
A '''path''' ''u''<sub>1</sub>...''u''<sub>''n''</sub> ∈ ''U''<sup>[[Kleene star|*]]</sup> is a string of path components ''u''<sub>''i''</sub> ∈ ''U''; ''n'' may be 0, with the empty path denoted by ε.
A '''thread''' has the form ''u''<sub>1</sub>...''u''<sub>''n''</sub>:''A'', where ''u''<sub>1</sub>...''u''<sub>''n''</sub> ∈ ''U''<sup>*</sup> is a path, and ''A'' ∈ ''N'' is a state.
A '''thread store''' ''S'' is a finite set of threads, viewed as a partial function from ''U''<sup>*</sup> to ''N'', such that ''dom''(''S'') is [[closure (mathematics)|closed]] by [[prefix (computer science)|prefix]].
A thread automaton '''configuration''' is a triple {{math|{{angbr|''l'',''p'',''S''}}}}, where {{mvar|l}} denotes the current position in the input string, ''p'' is the active thread, and ''S'' is a thread store containing ''p''.
The '''initial configuration''' is {{math|{{angbr|0, ε, {{mset|ε:''A''<sub>''S''</sub>}}}}}}.
The '''final configuration''' is {{math|{{angbr|''n'', ''u'', {{mset|ε:''A''<sub>''S''</sub>,''u'':''A''<sub>''F''</sub>}}}}}}, where ''n'' is the length of the input string and ''u'' abbreviates δ(''A''<sub>''S''</sub>).
A '''transition''' in the set Θ may have one of the following forms, and changes the current automaton configuration in the following way:
* '''SWAP''' ''B'' →<sub>''a''</sub> ''C'': consumes the input symbol ''a'', and changes the state of the active thread:
: changes the configuration from {{math|{{angbr|''l'', ''p'', ''S''∪{{mset|''p'':''B''}}}}}} to {{math|{{angbr|''l''+1, ''p'', ''S''∪{{mset|''p'':''C''}}}}}}
* '''SWAP''' ''B'' →<sub>ε</sub> ''C'': similar, but consumes no input:
: changes {{math|{{angbr|''l'', ''p'', ''S''∪{{mset|''p'':''B''}}}}}} to {{math|{{angbr|''l'', ''p'', ''S''∪{{mset|''p'':''C''}}}}}}
* '''PUSH''' ''C'': creates a new subthread, and suspends its parent thread:
: changes {{math|{{angbr|''l'', ''p'', ''S''∪{{mset|''p'':''B''}}}}}} to {{math|{{angbr|''l'', ''pu'', ''S''∪{{mset|''p'':''B'',''pu'':''C''}}}}}} where ''u''=δ(''B'') and ''pu''∉dom(''S'')
* '''POP''' [''B'']''C'': ends the active thread, returning control to its parent:
: changes {{math|{{angbr|''l'', ''pu'', ''S''∪{{mset|''p'':''B'',''pu'':''C''}}}}}} to {{math|{{angbr|''l'', ''p'', ''S''∪{{mset|''p'':''C''}}}}}} where δ(''C'')=⊥ and ''pu''∉dom(''S'')
* '''SPUSH''' [''C''] ''D'': resumes a suspended subthread of the active thread:
: changes {{math|{{angbr|''l'', ''p'', ''S''∪{{mset|''p'':''B'',''pu'':''C''}}}}}} to {{math|{{angbr|''l'', ''pu'', ''S''∪{{mset|''p'':''B'',''pu'':''D''}}}}}} where ''u''=δ(''B'')
* '''SPOP''' [''B''] ''D'': resumes the parent of the active thread:
: changes {{math|{{angbr|''l'', ''pu'', ''S''∪{{mset|''p'':''B'',''pu'':''C''}}}}}} to {{math|{{angbr|''l'', ''p'', ''S''∪{{mset|''p'':''D'',''pu'':''C''}}}}}} where δ(''C'')=⊥
One may prove that δ(''B'')=''u'' for '''POP''' and '''SPOP''' transitions, and δ(''C'')=⊥ for '''SPUSH''' transitions.<ref>Villemonte (2002), p.1r-2r</ref>
An input string is '''accepted''' by the automaton if there is a sequence of transitions changing the initial into the final configuration.
==Notes==
{{reflist|group=note}}
==References==
{{reflist}}
{{Formal languages and grammars}}
[[Category:Models of computation]]
[[Category:Automata
|