Content deleted Content added
Minimalrho (talk | contribs) |
m Open access bot: doi added to citation with #oabot. |
||
(15 intermediate revisions by 11 users not shown) | |||
Line 1:
In [[mathematics]], particularly in the theory of [[C*-algebras]], a '''uniformly hyperfinite''', or '''UHF''', algebra is a C*-algebra that can be written as the closure, in the [[Operator norm|norm topology]], of an increasing union of finite
== Definition
A UHF C*-algebra is the [[direct limit]] of an inductive system {''A<sub>n</sub>'', ''φ<sub>n</sub>''} where each ''A<sub>n</sub>'' is a finite
:<math>A = \overline {\cup_n A_n}.</math>
== Classification ==
If ▼
:<math>A_n \simeq M_{k_n} (\mathbb C),</math>
then ''
:<math>\phi_n (a) = a \otimes I_r,</math>
where ''I<sub>r</sub>'' is the identity in the ''r'' × ''r'' matrices. The sequence ...''k<sub>n</sub>''|''k''<sub>''n'' + 1</sub>|''k''<sub>''n'' + 2</sub>... determines a formal product
:<math>\delta(A) = \prod_p p^{t_p}</math>
where each ''p'' is prime and ''t<sub>p</sub>'' = sup {''m'' | ''p<sup>m</sup>'' divides ''k<sub>n</sub> '' for some ''n''}, possibly zero or infinite. The formal product ''δ''(''A'') is said to be the [[supernatural number]] corresponding to ''A''.<ref name=Rordam00>{{cite book|last=Rørdam|first=M.|last2=Larsen|first2=F.|last3=Laustsen|first3=N.J.|title=An Introduction to K-Theory for C*-Algebras|year=2000|publisher=Cambridge University Press|___location=Cambridge|isbn=0521789443}}</ref> [[James Glimm|Glimm]] showed that the supernatural number is a complete invariant of UHF C*-algebras.<ref name=glimm60>{{cite journal|last=Glimm|first=James G.|title=On a certain class of operator algebras|journal=Transactions of the American Mathematical Society|date=1 February
If ''δ''(''A'') is finite, then ''A'' is the full matrix algebra ''M''<sub>''δ''(''A'')</sub>. A UHF algebra is said to be of '''infinite type''' if each ''t<sub>p</sub>'' in ''δ''(''A'') is 0 or ∞.
In the language of [[K-theory]], each [[supernatural number
:<math>\delta(A) = \prod_p p^{t_p}</math>
specifies an additive subgroup of '''
One example of a UHF C*-algebra is the [[CAR algebra]]. It is defined as follows: let ''H'' be a separable complex Hilbert space ''H'' with orthonormal basis ''f<sub>n</sub>'' and ''L''(''H'') the bounded operators on ''H'', consider a linear map
:<math>\alpha : H \rightarrow L(H)</math>
Line 40 ⟶ 42:
\{ \alpha(f_n), \alpha(f_m) \} = 0 \quad \mbox{and} \quad \alpha(f_n)^*\alpha(f_m) + \alpha(f_m)\alpha(f_n)^* =
\langle f_m, f_n \rangle I.
</math>
The CAR algebra is the C*-algebra generated by
:<math>\{ \alpha(f_n) \}\;.</math>
Line 52 ⟶ 54:
can be identified with the multiplicity 2 embedding
:<math>M_{2^n} \hookrightarrow M_{2^{n+1}}.</math
Therefore, the CAR algebra has supernatural number 2<sup>∞</sup>.<ref name="Davidson97">{{cite book|last=Davidson|first=Kenneth|authorlink=Kenneth Davidson (mathematician)|title=C*-Algebras by Example|year=1997|publisher=Fields Institute|isbn=0-8218-0599-1|pages=166, 218–219, 234}}</ref> This identification also yields that its ''K''<sub>0</sub> group is the [[dyadic rational]]s.
== References ==
Line 60 ⟶ 62:
[[Category:C*-algebras]]
|