Content deleted Content added
m bad link |
→Calculation: Added a tip-off that the condition in the last sentence would be coming |
||
(32 intermediate revisions by 20 users not shown) | |||
Line 1:
{{Short description|Way of writing a meromorphic function}}
In [[complex analysis]], a '''partial fraction expansion''' is a way of writing a [[meromorphic function]] ==Motivation==
By using [[polynomial long division]] and the partial fraction technique from algebra, any rational function can be written as a sum of terms of the form
A proper rational function
==Calculation==
Let
* The origin lies inside each curve
* No curve passes through a pole of
*
* <math>\lim_{k\rightarrow \infty} d(\Gamma_k) = \infty</math>, where
* one more condition of compatibility with the poles <math>\lambda_k</math>, described at the end of this section
:<math>\lim_{k\rightarrow \infty} \oint_{\Gamma_k} \left|\frac{f(z)}{z^{p+1}}\right| |dz| < \infty</math>▼
▲Suppose also that there exists an integer ''p'' such that
Writing <math>\operatorname{PP}(
▲:<math>\lim_{k\rightarrow \infty} \oint_{\Gamma_k} \left|\frac{f(z)}{z^{p+1}}\right| dz < \infty</math>
▲Writing PP(''f(z)''; ''z = λ<sub>k</sub>'') for the [[principal part]] of the [[Laurent expansion]] of ''f'' about the point ''λ<sub>k</sub>'', we have
:<math>f(z) = \sum_{k=0}^{\infty} \operatorname{PP}(f(z); z = \lambda_k),</math>
if
:<math>f(z) = \sum_{k=0}^{\infty} (\operatorname{PP}(f(z); z = \lambda_k) + c_{0,k} + c_{1,k}z + \cdots + c_{p,k}z^p),</math>
where the coefficients
:<math>c_{j,k} = \operatorname{Res}_{z=\lambda_k} \frac{f(z)}{z^{j+1}}</math>
<math>\lambda_0</math> should be set to 0, because even if <math>f(z)</math> itself does not have a pole at 0, the [[residue (complex analysis)|residue]]s of <math display=inline>\frac{f(z)}{z^{j+1}}</math> at <math>z = 0</math> must still be included in the sum.
Note that if ''λ<sub>k</sub>'' = 0, we can use the Laurent expansion of ''f(z)'' about the origin to get▼
▲Note that
:<math>f(z) = \frac{a_{-m}}{z^m} + \frac{a_{-m+1}}{z^{m-1}} + \cdots + a_0 + a_1 z + \cdots</math>
Line 40 ⟶ 42:
:<math>\sum_{j=0}^p c_{j,k}z^j = a_0 + a_1 z + \cdots + a_p z^p</math>
so that the polynomial terms
:<math>c_{j,k} = \frac{1}{\lambda_k^{j+1}} \operatorname{Res}_{z=\lambda_k} f(z)</math>
:<math>\sum_{j=0}^p c_{j,k}z^j = [\operatorname{Res}_{z=\lambda_k} f(z)] \sum_{j=0}^p \frac{1}{\lambda_k^{j+1}} z^j</math>
* To avoid issues with convergence, the poles should be ordered so that if
▲To avoid issues with convergence, the poles should be ordered so that if λ<sub>k</sub> is inside Γ<sub>n</sub>, then λ<sub>j</sub> is also inside Γ<sub>n</sub> for all ''j'' < ''k''.
==Example==
The simplest
▲The simplest examples of meromorphic functions with an infinite number of poles are the non-entire trigonometric functions, so take the function tan(''z''). tan(''z'') is meromorphic with poles at ''(n + 1/2)π'', ''n'' = 0, ±1, ±2, ... The contours ''Γ<sub>k</sub>'' will be squares with vertices at ''±πk ± πki'' traversed counterclockwise, ''k'' > 1, which are easily seen to satisfy the necessary conditions.
On the horizontal sides of
:<math>z = t \pm \pi k i,\ \ t \in [-\pi k, \pi k],</math>
Line 65:
:<math>|\tan(z)|^2 = \frac{\sin^2(t)\cosh^2(\pi k) + \cos^2(t)\sinh^2(\pi k)}{\cos^2(t)\cosh^2(\pi k) + \sin^2(t)\sinh^2(\pi k)}</math>
<math>\sinh(
:<math>|\tan(z)|^2 < \frac{\cosh^2(\pi k)(\sin^2(t) + \cos^2(t))}{\sinh^2(\pi k)(\cos^2(t) + \sin^2(t))} = \coth^2(\pi k)</math>
For
With this bound on <math>|\tan(
:<math>\oint_{\Gamma_k} \left|\frac{\tan(z)}{z}\right| dz \le \operatorname{length}(\Gamma_k) \max_{z\in \Gamma_k} \left|\frac{\tan(z)}{z}\right| < 8k \pi \frac{\coth(\pi)}{k\pi} = 8\coth(\pi) < \infty.</math>
Therefore
:<math>\tan(z) = \sum_{k=0}^{\infty} (\operatorname{PP}(\tan(z); z = \lambda_k) + \operatorname{Res}_{z=\lambda_k} \frac{\tan(z)}{z}).</math>
The principal parts and
:<math>\operatorname{PP}(\tan(z); z = (n + \frac{1}{2})\pi) = \frac{-1}{z - (n + \frac{1}{2})\pi}</math>
:<math>\operatorname{Res}_{z=(n + \frac{1}{2})\pi} \frac{\tan(z)}{z} = \frac{-1}{(n + \frac{1}{2})\pi}</math>
We can ignore <math>\lambda_0 = 0</math>, since both <math>\tan(z)</math> and <math display=inline>\frac{\tan(z)}{z}</math> are analytic at 0, so there is no contribution to the sum, and ordering the poles <math>\lambda_k</math> so that <math display=inline>\lambda_1 = \frac{\pi}{2}, \lambda_2 = \frac{-\pi}{2}, \lambda_3 = \frac{3\pi}{2}</math>, etc., gives
:<math>\tan(z) = \sum_{k=0}^{\infty} \left[\left(\frac{-1}{z - (k + \frac{1}{2})\pi} - \frac{1}{(k + \frac{1}{2})\pi}\right) + \left(\frac{-1}{z + (k + \frac{1}{2})\pi} + \frac{1}{(k + \frac{1}{2})\pi}\right)\right]</math>
:<math>\tan(z) = \sum_{k=0}^{\infty} \frac{-2z}{z^2 - (k + \frac{1}{2})^2\pi^2}</math>
==Applications==
===Infinite products===
Because the partial fraction expansion often yields sums of ''1/(a+bz)'', it can be useful in finding a way to write a function as an [[infinite product]]; integrating both sides gives a sum of logarithms, and exponentiating gives the desired product:▼
▲Because the partial fraction expansion often yields sums of
:<math>\tan(z) = -\sum_{k=0}^{\infty} \left(\frac{1}{z - (k + \frac{1}{2})\pi} + \frac{1}{z + (k + \frac{1}{2})\pi}\right)</math>
Line 107 ⟶ 109:
:<math>\cos z = \prod_{k=0}^{\infty} \left(1 - \frac{z^2}{(k + \frac{1}{2})^2\pi^2}\right).</math>
===Laurent series===
The partial fraction expansion for a function can also be used to find a Laurent series for it by simply replacing the rational functions in the sum with their Laurent series, which are often not difficult to write in closed form. This can also lead to interesting identities if a Laurent series is already known.
Recall that
:<math>\tan(z) = \sum_{k=0}^{\infty} \frac{-2z}{z^2 - (k + \frac{1}{2})^2\pi^2} = \sum_{k=0}^{\infty} \frac{-8z}{4z^2 - (2k + 1)^2\pi^2}.</math>
We can expand the summand using a geometric series:
:<math>\frac{-8z}{4z^2 - (2k + 1)^2\pi^2} = \frac{8z}{(2k + 1)^2\pi^2} \frac{1}{1 - (\frac{2z}{(2k + 1)\pi})^2} = \frac{8}{(2k + 1)^2\pi^2}\sum_{n=0}^{\infty} \frac{2^{2n}}{(2k + 1)^{2n}\pi^{2n}} z^{2n + 1}.</math>
Substituting back,
:<math>\tan(z) = 2\sum_{k=0}^{\infty} \sum_{n=0}^{\infty} \frac{2^{2n+2}}{(2k + 1)^{2n+2}\pi^{2n+2}} z^{2n + 1},</math>
which shows that the coefficients <math>a_n</math> in the Laurent (Taylor) series of <math>\tan(z)</math> about <math>z = 0</math> are
:<math>a_{2n+1} = \frac{T_{2n+1}}{(2n+1)!} = \frac{2^{2n+3}}{\pi^{2n+2}} \sum_{k=0}^{\infty} \frac{1}{(2k + 1)^{2n+2}}</math>
:<math>a_{2n} = \frac{T_{2n}}{(2n)!} = 0,</math>
where <math>T_n</math> are the [[tangent numbers]].
Conversely, we can compare this formula to the Taylor expansion for <math>\tan(z)</math> about <math>z = 0</math> to calculate the infinite sums:
:<math>\tan(z) = z + \frac{1}{3}z^3 + \frac{2}{15}z^5 + \cdots</math>
:<math>\sum_{k=0}^{\infty} \frac{1}{(2k + 1)^2} = \frac{\pi^2}{2^3} = \frac{\pi^2}{8}</math>
:<math>\sum_{k=0}^{\infty} \frac{1}{(2k + 1)^4} = \frac{1}{3} \frac{\pi^4}{2^5} = \frac{\pi^4}{96}.</math>
==See also==
* [[Partial fraction]]
* [[
* [[Residue (complex analysis)]]
* [[Residue theorem]]
==References==
* Markushevich, A.I. ''Theory of functions of a complex variable''. Trans. Richard A. Silverman. Vol. 2. Englewood Cliffs, N.J.: Prentice-Hall, 1965.
[[Category:Complex analysis]]
[[Category:Partial fractions]]
|