Content deleted Content added
No edit summary |
Citation bot (talk | contribs) Add: doi-access. | Use this bot. Report bugs. | #UCB_CommandLine |
||
(48 intermediate revisions by 22 users not shown) | |||
Line 1:
The '''chaperone code''' refers to [[Post-translational modification|post-translational modifications]] of molecular [[Chaperone (protein)|chaperones]] that control protein folding. Whilst the [[genetic code]] specifies how [[DNA]] makes proteins, and the [[histone code]] regulates histone-DNA interactions, the chaperone code controls how proteins are folded to produce a functional [[proteome]].<ref name=":0">{{Cite journal|last1=Nitika|last2=Porter|first2=Corey M.|last3=Truman|first3=Andrew W.|last4=Truttmann|first4=Matthias C.|date=2020-07-31|title=Post-translational modifications of Hsp70 family proteins: Expanding the chaperone code|journal=The Journal of Biological Chemistry|volume=295|issue=31|pages=10689–10708|doi=10.1074/jbc.REV120.011666|issn=0021-9258|pmc=7397107|pmid=32518165|doi-access=free }}</ref><ref name=":1">{{Cite journal|last1=Backe|first1=Sarah J.|last2=Sager|first2=Rebecca A.|last3=Woodford|first3=Mark R.|last4=Makedon|first4=Alan M.|last5=Mollapour|first5=Mehdi|date=2020-08-07|title=Post-translational modifications of Hsp90 and translating the chaperone code|journal=The Journal of Biological Chemistry|volume=295|issue=32|pages=11099–11117|doi=10.1074/jbc.REV120.011833|issn=0021-9258|pmc=7415980|pmid=32527727|doi-access=free }}</ref>
The chaperone code refers to the combinatorial array of
The chaperone code concept posits that combinations of post-translational modifications at the surface of chaperones, including phosphorylation, acetylation,<ref name=":0" /> methylation,<ref>{{Cite journal|last1=Jakobsson|first1=Magnus E.|last2=Moen|first2=Anders|last3=Bousset|first3=Luc|last4=Egge-Jacobsen|first4=Wolfgang|last5=Kernstock|first5=Stefan|last6=Melki|first6=Ronald|last7=Falnes|first7=Pål Ø.|date=2013-09-27|title=Identification and Characterization of a Novel Human Methyltransferase Modulating Hsp70 Protein Function through Lysine Methylation|journal=The Journal of Biological Chemistry|volume=288|issue=39|pages=27752–27763|doi=10.1074/jbc.M113.483248|issn=0021-9258|pmc=3784692|pmid=23921388|doi-access=free }}</ref> ubiquitination,<ref>{{Cite journal|last1=Kampinga|first1=Harm H.|last2=Craig|first2=Elizabeth A.|date=August 2010|title=The Hsp70 chaperone machinery: J-proteins as drivers of functional specificity|journal=Nature Reviews. Molecular Cell Biology|volume=11|issue=8|pages=579–592|doi=10.1038/nrm2941|issn=1471-0072|pmc=3003299|pmid=20651708}}</ref> control protein folding/unfolding and protein complex assembly/disassembly by modulating:
1) [[Substrate (chemistry)|chaperone-substrate]] affinity and specificity
2) chaperone ATPase and therefore its refolding activity
3) chaperone localization
4) chaperone-co-chaperone interaction.<ref>{{cite journal |doi=10.1016/j.bbagrm.2013.02.010 |pmid=23459247 |pmc=4492711 |title=Regulation of molecular chaperones through post-translational modifications: Decrypting the chaperone code |journal=Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms |volume=1829 |issue=5 |pages=443–54 |year=2013 |last1=Cloutier |first1=Philippe |last2=Coulombe |first2=Benoit }}</ref><ref>{{cite journal |doi=10.1371/journal.pgen.1003210 |pmid=23349634 |pmc=3547847 |title=A Newly Uncovered Group of Distantly Related Lysine Methyltransferases Preferentially Interact with Molecular Chaperones to Regulate Their Activity |journal=PLOS Genetics |volume=9 |issue=1 |pages=e1003210 |year=2013 |last1=Cloutier |first1=Philippe |last2=Lavallée-Adam |first2=Mathieu |last3=Faubert |first3=Denis |last4=Blanchette |first4=Mathieu |last5=Coulombe |first5=Benoit |doi-access=free }}</ref>
== Levels of the Chaperone Code ==
The Chaperone code is incredibly complex with multiple layers of potential regulation. Studies of the chaperone code may include:
Level 1: Understanding the role and regulation of single PTMs on a single chaperone
Level 2: Cross-talk of different PTMs on a single amino acid or between PTMs on different amino acids (on a single chaperone)
Level 3: Understanding of why chaperone paralogs have different PTMs
Level 4: Cross-talk of PTMs between different chaperones i.e. between Hsp90 and Hsp70
Level 5: Understanding the role and regulation of single PTMs on a single co-chaperone molecule
Level 6: Understanding the entire chaperone code-all the PTMs on all major chaperones, co-chaperones that control all aspects of life.
== Phosphorylation ==
Site-specific [[Protein phosphorylation|phosphorylation]] of chaperone proteins can affect their activity. In some cases phosphorylation may disrupt the interaction with a co-chaperone protein thus negatively affecting its activity. In other instances it may promote the activation of particular chaperone targets (referred to as clients).<ref>{{Cite journal|last1=Woodford|first1=Mark R.|last2=Truman|first2=Andrew W.|last3=Dunn|first3=Diana M.|last4=Jensen|first4=Sandra M.|last5=Cotran|first5=Richard|last6=Bullard|first6=Renee|last7=Abouelleil|first7=Mourad|last8=Beebe|first8=Kristin|last9=Wolfgeher|first9=Donald|last10=Wierzbicki|first10=Sara|last11=Post|first11=Dawn E.|date=2016-02-02|title=Mps1 Mediated Phosphorylation of Hsp90 Confers Renal Cell Carcinoma Sensitivity and Selectivity to Hsp90 Inhibitors|journal=Cell Reports|volume=14|issue=4|pages=872–884|doi=10.1016/j.celrep.2015.12.084|issn=2211-1247|pmc=4887101|pmid=26804907}}</ref> Enzymes such as [[protein kinase A]], casein kinase 1 and 2 ([[Casein kinase 1|CK1]] and [[Casein kinase 2|CK2]]), and [[GSK3B|glycogen synthase kinase B]] serve as kinases for chaperone proteins.<ref name=":1" /> [[Hsp70|HSP70]], a major chaperone protein, was identified in 2012 as a hotspot of phospho-regulation.<ref>{{Cite journal|last1=Beltrao|first1=Pedro|last2=Albanèse|first2=Véronique|last3=Kenner|first3=Lillian R.|last4=Swaney|first4=Danielle L.|last5=Burlingame|first5=Alma|last6=Villén|first6=Judit|last7=Lim|first7=Wendell A.|last8=Fraser|first8=James S.|last9=Frydman|first9=Judith|last10=Krogan|first10=Nevan J.|date=2012-07-20|title=Systematic Functional Prioritization of Protein Posttranslational Modifications|url= |journal=Cell|language=English|volume=150|issue=2|pages=413–425|doi=10.1016/j.cell.2012.05.036|issn=0092-8674|pmid=22817900|pmc=3404735}}</ref> Subsequently, phosphorylation of chaperone protein HSP70 by a cyclin dependent kinase was shown to delay [[cell cycle]] progression in yeast and mammals by altering [[cyclin D1]] stability (a key regulator of the cell cycle).<ref>{{Cite journal|last1=Truman|first1=Andrew|last2=Kristjansdottir|first2=Kolbrun|last3=Wolfgeher|first3=Donald|last4=Hasin|first4=Naushaba|last5=Polier|first5=Sigrun|last6=Zhang|first6=Hong|last7=Perrett|first7=Sarah|last8=Prodromou|first8=Chrisostomos|last9=Jones|first9=Gary|last10=Kron|first10=Stephen|date=2012-12-07|title=CDK-Dependent Hsp70 Phosphorylation Controls G1 Cyclin Abundance and Cell-Cycle Progression|journal=Cell|volume=151|issue=6|pages=1308–1318|doi=10.1016/j.cell.2012.10.051|issn=0092-8674|pmc=3778871|pmid=23217712}}</ref> Phosphorylation of HSP90 (another major chaperone) at threonine 22, was shown to disrupt its interaction with co-chaperone proteins Aha1 and CD37 (interacting proteins required for function) and decrease its activity.<ref name=":1" /><ref>{{Cite journal|last1=Mollapour|first1=Mehdi|last2=Tsutsumi|first2=Shinji|last3=Truman|first3=Andrew W.|last4=Xu|first4=Wanping|last5=Vaughan|first5=Cara K.|last6=Beebe|first6=Kristin|last7=Konstantinova|first7=Anna|last8=Vourganti|first8=Srinivas|last9=Panaretou|first9=Barry|last10=Piper|first10=Peter W.|last11=Trepel|first11=Jane B.|date=2011-03-18|title=Threonine 22 phosphorylation attenuates Hsp90 interaction with co-chaperones and affects its chaperone activity|journal=Molecular Cell|volume=41|issue=6|pages=672–681|doi=10.1016/j.molcel.2011.02.011|issn=1097-2765|pmc=3062913|pmid=21419342}}</ref> Certain pathogenic bacteria may manipulate host chaperone phosphorylation through bacterial effectors to promote their survival. HoPBF1, a family of bacterial effector protein kinases, phosphorylates HSP90 at Serine 99 to dampen immunity.<ref>{{Cite journal|last1=Lopez|first1=Victor A.|last2=Park|first2=Brenden C.|last3=Nowak|first3=Dominika|last4=Sreelatha|first4=Anju|last5=Zembek|first5=Patrycja|last6=Fernandez|first6=Jessie|last7=Servage|first7=Kelly A.|last8=Gradowski|first8=Marcin|last9=Hennig|first9=Jacek|last10=Tomchick|first10=Diana R.|last11=Pawłowski|first11=Krzysztof|date=2019-09-19|title=A Bacterial Effector Mimics a Host HSP90 Client to Undermine Immunity|url= |journal=Cell|language=English|volume=179|issue=1|pages=205–218.e21|doi=10.1016/j.cell.2019.08.020|issn=0092-8674|pmc=6754304|pmid=31522888}}</ref>
== Methylation ==
Chaperone proteins are also regulated by methylation. This can occur through a conformational change (or a change in the structure of the protein), such that the interactions and activity of the protein are changed. <ref name=":1" /><ref>{{Cite journal|last1=Donlin|first1=Laura T.|last2=Andresen|first2=Christian|last3=Just|first3=Steffen|last4=Rudensky|first4=Eugene|last5=Pappas|first5=Christopher T.|last6=Kruger|first6=Martina|last7=Jacobs|first7=Erica Y.|last8=Unger|first8=Andreas|last9=Zieseniss|first9=Anke|last10=Dobenecker|first10=Marc-Werner|last11=Voelkel|first11=Tobias|date=2012-01-15|title=Smyd2 controls cytoplasmic lysine methylation of Hsp90 and myofilament organization|journal=Genes & Development|volume=26|issue=2|pages=114–119|doi=10.1101/gad.177758.111|issn=0890-9369|pmc=3273835|pmid=22241783}}</ref> For instance, the monomethylation of HSP90 lysine 616 by [[SMPD2|Smyd2]], and its reversal by [[KDM1A|LSD1]], regulate enzymatic activity of HSP90.<ref>{{Cite journal|last1=Abu-Farha|first1=Mohamed|last2=Lanouette|first2=Sylvain|last3=Elisma|first3=Fred|last4=Tremblay|first4=Véronique|last5=Butson|first5=Jeffery|last6=Figeys|first6=Daniel|last7=Couture|first7=Jean-François|date=October 2011|title=Proteomic analyses of the SMYD family interactomes identify HSP90 as a novel target for SMYD2|journal=Journal of Molecular Cell Biology|volume=3|issue=5|pages=301–308|doi=10.1093/jmcb/mjr025|issn=1759-4685|pmid=22028380|doi-access=free}}</ref><ref>{{Cite journal|last1=Rehn|first1=Alexandra|last2=Lawatscheck|first2=Jannis|last3=Jokisch|first3=Marie-Lena|last4=Mader|first4=Sophie L.|last5=Luo|first5=Qi|last6=Tippel|first6=Franziska|last7=Blank|first7=Birgit|last8=Richter|first8=Klaus|last9=Lang|first9=Kathrin|last10=Kaila|first10=Ville R. I.|last11=Buchner|first11=Johannes|date=May 2020|title=A methylated lysine is a switch point for conformational communication in the chaperone Hsp90|journal=Nature Communications|volume=11|issue=1|pages=1219|doi=10.1038/s41467-020-15048-8|issn=2041-1723|pmc=7057950|pmid=32139682|bibcode=2020NatCo..11.1219R}}</ref>
==References==
{{reflist}}
[[Category:Genetics]]
[[Category:Protein folding]]
[[Category:Methylation]]
|