Content deleted Content added
→Properties: modifying inline ref accordingly |
|||
(31 intermediate revisions by 14 users not shown) | |||
Line 1:
In [[mathematics]], the '''modulus of convexity''' and the '''characteristic of convexity''' are measures of "how [[convex set|convex]]" the [[unit ball]] in a [[Banach space]] is. In some sense, the modulus of convexity has the same relationship to the ''ε''-''δ'' definition of [[uniformly convex space|uniform convexity]] as the [[modulus of continuity]] does to the ''ε''-''δ'' definition of [[continuous function|continuity]].
==Definitions==
The '''modulus of convexity''' of a Banach space (''X'', ||&
:<math>\delta (\varepsilon) = \inf \left\{
where ''S'' denotes the unit sphere of (''X'', || ||).
The '''characteristic of convexity''' of the space (''X'', || ||) is the number ''ε''<sub>0</sub> defined by
:<math>\varepsilon_{0} = \sup \{ \varepsilon | \delta(\varepsilon) = 0 \}.</math>▼
These notions are implicit in the general study of uniform convexity by J. A. Clarkson (see below; this is the same paper containing the statements of [[Clarkson's inequalities]]). The term "modulus of convexity" appears to be due to M. M. Day (see reference below).▼
▲These notions are implicit in the general study of uniform convexity by J.
| last = Day▼
| first = Mahlon▼
| title = Uniform convexity in factor and conjugate spaces▼
| volume = 45▼
| year = 1944▼
| pages = 375–385▼
| doi = 10.2307/1969275▼
| issue = 2▼
| jstor = 1969275▼
}}</ref>
==Properties==
* The modulus of convexity, ''δ''(''ε''), is a [[monotonic function|non-decreasing]] function of ''ε'', and the quotient {{nowrap|''δ''(''ε'') / ''ε''}} is also non-decreasing on {{nowrap|(0, 2]}}.<ref>Lemma 1.e.8, p. 66 in {{harvtxt|Lindenstrauss|Tzafriri|1979}}.</ref> The modulus of convexity need not itself be a [[convex function]] of ''ε''.<ref>see Remarks, p. 67 in {{harvtxt|Lindenstrauss|Tzafriri|1979}}.</ref> However, the modulus of convexity is equivalent to a convex function in the following sense:<ref>see Proposition 1.e.6, p. 65 and Lemma 1.e.7, 1.e.8, p. 66 in {{harvtxt|Lindenstrauss|Tzafriri|1979}}.</ref> there exists a convex function ''δ''<sub>1</sub>(''ε'') such that
::<math>\delta(\varepsilon / 2) \le \delta_1(\varepsilon) \le \delta(\varepsilon), \quad \varepsilon \in [0, 2].</math>
* (''X'', || ||) is a [[uniformly convex space]] [[if and only if]] its characteristic of convexity ''ε''<sub>0</sub> is equal to 0.▼
* (''X'', || ||) is a [[strictly convex space]] (i.e., the boundary of the unit ball ''B'' contains no line segments) if and only if ''δ''(2) = 1.▼
▲* The normed space {{nowrap|(''X'', ǁ&
==References==▼
▲* The Banach space {{nowrap|(''X'', ǁ&
* When ''X'' is uniformly convex, it admits an equivalent norm with power type modulus of convexity.<ref>see {{citation
| last=Pisier |first=Gilles |author-link=Gilles Pisier
.</ref> Namely, there exists {{nowrap|''q'' ≥ 2}} and a constant {{nowrap|''c'' > 0}} such that
::<math>\delta(\varepsilon) \ge c \, \varepsilon^q, \quad \varepsilon \in [0, 2].</math>
==Modulus of convexity of the ''L''<sup>''P''</sup> spaces==
{{reflist}}▼
The modulus of convexity is known for the ''L''<sup>''P''</sup> spaces.<ref>{{citation
* {{cite book|author=Beauzamy, Bernard|title=Introduction to Banach Spaces and their Geometry|year=1985 [1982]|edition=Second revised|publisher=North-Holland|mr=889253|isbn=0-444-86416-4}}▼
| last = Hanner
| first = Olof
| title = On the uniform convexity of <math>L^p</math> and <math>\ell^p</math>
| volume = 3
| year = 1955
| pages = 239–244
| doi = 10.1007/BF02589410
| doi-access = free
}}</ref> If <math>1<p\le2</math>, then it satisfies the following implicit equation:
:<math>\left(1-\delta_p(\varepsilon)+\frac{\varepsilon}{2}\right)^p+\left(1-\delta_p(\varepsilon)-\frac{\varepsilon}{2}\right)^p=2.
</math>
Knowing that <math>\delta_p(\varepsilon+)=0,</math> one can suppose that <math>\delta_p(\varepsilon)=a_0\varepsilon+a_1\varepsilon^2+\cdots</math>. Substituting this into the above, and expanding the left-hand-side as a [[Taylor series]] around <math>\varepsilon=0</math>, one can calculate the <math>a_i</math> coefficients:
:<math>\delta_p(\varepsilon)=\frac{p-1}{8}\varepsilon^2+\frac{1}{384}(3-10p+9p^2-2p^3)\varepsilon^4+\cdots.
</math>
For <math>2<p<\infty</math>, one has the explicit expression
:<math>\delta_p(\varepsilon)=1-\left(1-\left(\frac{\varepsilon}{2}\right)^p\right)^{\frac1p}.
</math>
Therefore, <math>\delta_p(\varepsilon)=\frac{1}{p2^p}\varepsilon^p+\cdots</math>.
== See also ==
*[[Uniformly smooth space]]
==Notes==
▲{{reflist}}
▲==References==
▲* {{cite book|author=Beauzamy, Bernard|title=Introduction to Banach Spaces and their Geometry|year=1985
*{{citation
| last = Clarkson
| first = James
| title = Uniformly convex spaces
| journal =
| volume = 40
| year = 1936
Line 36 ⟶ 83:
| publisher = American Mathematical Society
| jstor = 1989630
| doi-access = free
}}
* Fuster, Enrique Llorens. Some moduli and constants related to metric fixed point theory. ''Handbook of metric fixed point theory'',
▲| last = Day
▲| first = Mahlon
▲| title = Uniform convexity in factor and conjugate spaces
▲| journal = Ann. Of Math. (2)
▲| volume = 45
▲| year = 1944
▲| pages = 375–385
▲| doi = 10.2307/1969275
▲| issue = 2
▲| publisher = Annals of Mathematics
▲| jstor = 1969275
▲* Fuster, Enrique Llorens. Some moduli and constants related to metric fixed point theory. ''Handbook of metric fixed point theory'', 133-175, Kluwer Acad. Publ., Dordrecht, 2001. {{MR|1904276}}
* [[Joram Lindenstrauss|Lindenstrauss, Joram]] and Benyamini, Yoav. ''Geometric nonlinear functional analysis'' Colloquium publications, 48. American Mathematical Society.
*{{citation
Line 68 ⟶ 100:
| isbn = 3-540-08888-1
}}.
* [[Vitali Milman|Vitali D. Milman]]. Geometric theory of Banach spaces II. Geometry of the unit sphere. ''Uspechi Mat. Nauk,'' vol. 26, no. 6,
{{Banach spaces}}
▲* {{cite journal | last=Pisier |first=Gilles |authorlink=Gilles Pisier | title= Martingales with values in uniformly convex spaces | journal=Israel J. Math. | volume=20 | year=1975 | issue=3–4 | pages=326–350 | doi = 10.1007/BF02760337 | url=http://www.springerlink.com/content/pwh1126545520581/ | mr=394135}}
{{Functional analysis}}
[[Category:Banach spaces]]
|