Content deleted Content added
A stub for this theorem. |
|||
(47 intermediate revisions by 34 users not shown) | |||
Line 1:
This theorem was announced by [[Czesław Ryll-Nardzewski]].<ref>{{cite journal|first=C.|last=Ryll-Nardzewski|title=Generalized random ergodic theorems and weakly almost periodic functions|journal=Bull. Acad. Polon. Sci. Sér. Sci. Math. Astron. Phys.|volume=10|year=1962|pages=271–275}}</ref> Later Namioka and Asplund <ref>{{cite journal|doi=10.1090/S0002-9904-1967-11779-8|first=I.|last=Namioka|author1-link= Isaac Namioka |author2=Asplund, E. |title=A geometric proof of Ryll-Nardzewski's fixed point theorem|journal=Bull. Amer. Math. Soc.|volume=73|issue=3|year=1967|pages=443–445|doi-access=free}}</ref> gave a proof based on a different approach. Ryll-Nardzewski himself gave a complete proof in the original spirit.<ref>{{cite journal|first=C.|last=Ryll-Nardzewski|title=On fixed points of semi-groups of endomorphisms of linear spaces|journal=Proc. 5th Berkeley Symp. Probab. Math. Stat|volume=2: 1|publisher=Univ. California Press|year=1967|pages=55–61}}</ref>
==Applications==
The Ryll-Nardzewski theorem yields the existence of a [[Haar measure]] on compact groups.<ref>{{cite book|first=N.|last=Bourbaki|title=Espaces vectoriels topologiques. Chapitres 1 à 5|series=Éléments de mathématique.|edition=New|publisher=Masson|___location=Paris|year=1981|isbn=2-225-68410-3}}</ref><!-- there seems to be a gap in the approach described in Conway's "A Course in Functional Analysis", about the treatment of weak vs. weak* topology -->
==See also==
* [[Fixed-point theorem]]s
* [[Fixed-point theorems in infinite-dimensional spaces]]
* [[Markov-Kakutani fixed-point theorem]] - abelian semigroup of continuous affine self-maps on compact convex set in a topological vector space has a fixed point
==References==
<references />
* Andrzej Granas and [[James Dugundji]], ''Fixed Point Theory'' (2003) Springer-Verlag, New York, {{isbn|0-387-00173-5}}.
* [http://www.math.harvard.edu/~lurie/261ynotes/lecture26.pdf A proof written by J. Lurie]
{{Functional analysis}}
[[Category:Fixed-point
[[Category:
|