Content deleted Content added
Citation bot (talk | contribs) Removed URL that duplicated identifier. Removed access-date with no URL. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 629/1032 |
|||
(110 intermediate revisions by 52 users not shown) | |||
Line 1:
{{Short description|64-bit computer number format}}
{{lowercase title}}
{{Use dmy dates|date=July 2020|cs1-dates=y}}
{{floating-point}}
In [[computing]], '''decimal64''' is a
Decimal64 is a decimal floating-point format, formally introduced in the [[IEEE 754-2008 revision|2008 revision]]<ref name="IEEE-754_2008">{{cite book |title=IEEE Standard for Floating-Point Arithmetic |author=IEEE Computer Society |date=2008-08-29 |publisher=[[IEEE]] |id=IEEE Std 754-2008 |doi=10.1109/IEEESTD.2008.4610935 |ref=CITEREFIEEE_7542008 |isbn=978-0-7381-5753-5 }}</ref> of the [[IEEE 754]] standard, also known as ISO/IEC/IEEE 60559:2011.<ref name="ISO-60559_2011">{{Cite book |last=ISO/IEC JTC 1/SC 25|title=ISO/IEC/IEEE 60559:2011 — Information technology — Microprocessor Systems — Floating-Point arithmetic |url=https://www.iso.org/standard/57469.html |publisher=ISO |pages=1–58 |date=June 2011}}</ref>
== Format ==
Decimal64 supports 'normal' values that can have 16 digit precision from {{gaps|±1.000|000|000|000|000|e=-383}} to {{gaps|±9.999|999|999|999|999|e=384}}, plus 'denormal' values with ramp-down relative precision down to ±1.×10<sup>−398</sup>, [[signed zero]]s, signed infinities and [[NaN]] (Not a Number). This format supports two different encodings.
The binary format of the same size supports a range from denormal-min {{gaps|±5|||||e=-324|}}, over normal-min with full 53-bit precision {{gaps|±2.225|073|858|507|201|e=-308|4}} to max {{gaps|±1.797|693|134|862|315|e=+308|7}}.
Because the significand for the [[IEEE 754]] decimal formats is not normalized, most values with less than 16 [[significant digits]] have multiple possible representations; 1000000 × 10<sup>−2</sup>=100000 × 10<sup>−1</sup>=10000 × 10<sup>0</sup>=1000 × 10<sup>1</sup> all have the value 10000. These sets of representations for a same value are called ''[[Cohort (floating point)|cohorts]]'', the different members can be used to denote how many digits of the value are known precisely. Each signed zero has 768 possible representations (1536 for all zeros, in two different cohorts).
== Encoding of decimal64 values ==
{| class="wikitable"
|-
! Sign !! Combination !! Significand continuation
|-
! 1 bit !! 13 bits !! 50 bits
|-
| {{mono|s}} || {{mono|mmmmmmmmmmmmm}} || {{mono|cccccccccccccccccccccccccccccccccccccccccccccccccc}}
|}
IEEE 754 allows two alternative encodings for decimal64 values. The standard does not specify how to signify which representation is used, for instance in a situation where decimal64 values are communicated between systems:
* In the [[#Binary integer significand field|binary encoding]], the 16-digit significand is represented as a binary coded positive integer, based on [[binary integer decimal]] (BID).
* In the [[#Densely packed decimal significand field|decimal encoding]], the 16-digit significand is represented as a decimal coded positive integer, based on [[densely packed decimal]] (DPD) with 5 groups of 3 digits (except the most significant digit encoded specially) are each represented in declets (10-bit sequences). This is pretty efficient, because 2<sup>10</sup> = 1024, is only little more than needed to still contain all numbers from 0 to 999.
Both alternatives provide exactly the same set of representable numbers: 16 digits of significand and {{math|size=100%|1=3 × 2<sup>8</sup> = 768}} possible decimal exponent values. (All the possible decimal exponent values storable in a [[binary64]] number are representable in decimal64, and most bits of the significand of a binary64 are stored keeping roughly the same number of decimal digits in the significand.)
In the cases of Infinity and NaN, all other bits of the encoding are ignored. Thus, it is possible to initialize an array to Infinities or NaNs by filling it with a single byte value.
=== Binary integer significand field ===
This format uses a binary significand from 0 to {{math|size=100%|1=10<sup>16</sup>
As described above, the encoding varies depending on whether the most significant {{val|4|u=bits}} of the significand are in the range 0 to 7 (0000<sub>2</sub> to 0111<sub>2</sub>), or higher (1000<sub>2</sub> or 1001<sub>2</sub>).
If the 2 after the sign bit are "00", "01", or "10", then the exponent field consists of the {{val|10|u=bits}} following the sign bit, and the significand is the remaining {{val|53|u=bits}}, with an implicit leading {{val|0|u=bit}}. This includes [[subnormal numbers]] where the leading significand digit is 0.
If the {{val|2
{| class="wikitable" style="text-align:left; border-width:0;"
|+ BID Encoding
|-
! colspan="13" | Combination Field
! rowspan="2" |
! rowspan="2" | Exponent
! rowspan="2" |Significand / Description
|-
! g12 !! g11 !! g10 !! g9 !! g8 !! g7 !! g6 !! g5 !! g4 !! g3 !! g2
!g1
!g0
|-
| colspan="16" |combination field not! starting with '11', bits ab = 00, 01 or 10
|-
| style="font-family:monospace; background:#cedff2;" | '''a''' || style="font-family:monospace; background:#cedff2;" | '''b''' || style="font-family:monospace; background:#cedff2;" | '''c''' || style="font-family:monospace; background:#cedff2;" | '''d''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cef2e0;" | '''e''' || style="font-family:monospace; background:#cef2e0;" |'''f''' || style="font-family:monospace; background:#cef2e0;" |'''g'''
| || style="font-family:monospace; background:#cedff2;" | '''abcdmmmmmm''' || style="background:#cef2e0;" |{{mono|(0)'''efgtttttttttttttttttttttttttttttttttttttttttttttttttt'''}}
Finite number with small first digit of significand (0 .. 7).
|-
| colspan="16" |combination field starting with '11', but not 1111, bits ab = 11, bits cd = 00, 01 or 10
|-
| 1 || 1 || style="font-family:monospace; background:#cedff2;" | '''c'''|| style="font-family:monospace; background:#cedff2;" | '''d''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''e''' || style="font-family:monospace; background:#cedff2;" | '''f''' || style="font-family:monospace; background:#cef2e0;" | '''g'''
| || style="font-family:monospace; background:#cedff2;" | '''cdmmmmmmef''' || style="background:#cef2e0;" |{{mono|'''100gtttttttttttttttttttttttttttttttttttttttttttttttttt'''}}
Finite number with big first digit of significand (8 or 9).
|-
| colspan="16" |combination field starting with '1111', bits abcd = 1111
|-
| 1 || 1 || 1 || 1 || 0 || colspan="8" |
| rowspan="3" | || || ±Infinity
|-
| 1 || 1 || 1 || 1 || 1 ||0
| colspan="7" |
|
| quiet NaN
|-
|1
|1
|1
|1
|1
|1
| colspan="7" |
|
|signaling NaN (with payload in significand)
|}
The leading bits of the significand field do ''not'' encode the most significant decimal digit; they are simply part of a larger pure-binary number. For example, a significand of {{gaps|8|000|000|000|000|000}} is encoded as binary {{gaps|0111|0001101011|1111010100|1001100011|0100000000|0000000000}}<sub>2</sub>, with the leading {{val|4|u=bits}} encoding 7; the first significand which requires a 54th bit is {{math|size=100%|1=2<sup>53</sup> = {{gaps|9|007|199|254|740|992}}.}} The highest valid significant is {{gaps|9|999|999|999|999|999}} whose binary encoding is
{{gaps|(100)0|1110000110|1111001001|1011111100|0000111111|1111111111}}<sub>2</sub> (with the 3 most significant bits (100) not stored but implicit as shown above; and the next bit is always zero in valid encodings).
In the above cases, the value represented is
: {{math|1=(−1)<sup>sign</
If the four bits after the sign bit are "1111" then the value is an infinity or a NaN, as described above:
x 11111 1x...x a signalling NaN
=== Densely packed decimal significand field ===
In this version, the significand is stored as a series of decimal digits. The leading digit is between 0 and 9 (3 or 4 binary bits), and the rest of the significand uses the [[densely packed decimal]] (DPD) encoding.
This eight bits after that are the exponent continuation field, providing the less-significant bits of the exponent.
The last {{val|50|u=bits}} are the significand continuation field, consisting of five 10-bit ''[[declet (computing)|declet]]s''.<ref name="Muller_2010">{{cite book |author-last1=Muller |author-first1=Jean-Michel |author-last2=Brisebarre |author-first2=Nicolas |author-last3=de Dinechin |author-first3=Florent |author-last4=Jeannerod |author-first4=Claude-Pierre |author-last5=Lefèvre |author-first5=Vincent |author-last6=Melquiond |author-first6=Guillaume |author-last7=Revol |author-first7=Nathalie|author7-link=Nathalie Revol |author-last8=Stehlé |author-first8=Damien |author-last9=Torres |author-first9=Serge |title=Handbook of Floating-Point Arithmetic |year=2010 |publisher=[[Birkhäuser]] |edition=1 |isbn=978-0-8176-4704-9<!-- print --> |doi=10.1007/978-0-8176-4705-6 |lccn=2009939668<!-- |isbn=978-0-8176-4705-6 (online), ISBN 0-8176-4704-X (print) -->|url=https://cds.cern.ch/record/1315760 }}</ref> Each declet encodes three decimal digits<ref name="Muller_2010"/> using the DPD encoding.
If the first two bits after the sign bit are "00", "01", or "10", then those are the leading bits of the exponent, and the three bits "
If the first two bits after the sign bit are "11", then the second 2-bits are the leading bits of the exponent, and the next bit "e" is prefixed with implicit bits "100" to form the leading decimal digit (8 or 9):
The remaining two combinations (11 110 and 11 111) of the 5-bit field after the sign bit are used to represent ±infinity and NaNs, respectively.
{| class="wikitable" style="text-align:left; border-width:0;"
|+ DPD Encoding
|-
! colspan="13" | Combination Field
! rowspan="2" |
! rowspan="2" | Exponent
! rowspan="2" |Significand / Description
|-
! g12 !! g11 !! g10 !! g9 !! g8 !! g7 !! g6 !! g5 !! g4 !! g3 !! g2
!g1
!g0
|-
| colspan="16" |combination field not! starting with '11', bits ab = 00, 01 or 10
|-
| style="font-family:monospace; background:#cedff2;" | '''a''' || style="font-family:monospace; background:#cedff2;" | '''b''' || style="font-family:monospace; background:#cef2e0;" | '''c''' || style="font-family:monospace; background:#cef2e0;" | '''d''' || style="font-family:monospace; background:#cef2e0;" | '''e''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m'''
| || style="font-family:monospace; background:#cedff2;" | '''abmmmmmmmm'''|| style="background:#cef2e0;" |{{nowrap|{{mono|(0)'''cde tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt'''}}}}
Finite number with small first digit of significand (0 … 7).
|-
| colspan="16" |combination field starting with '11', but not 1111, bits ab = 11, bits cd = 00, 01 or 10
|-
| 1 || 1 || style="font-family:monospace; background:#cedff2;" | '''c''' || style="font-family:monospace; background:#cedff2;" | '''d''' || style="font-family:monospace; background:#cef2e0;" | '''e''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m'''
| || style="font-family:monospace; background:#cedff2;" | '''cdmmmmmmmm'''|| style="background:#cef2e0;" |{{nowrap|{{mono|'''100e tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt'''}}}}
Finite number with big first digit of significand (8 or 9).
|-
| colspan="16" |combination field starting with '1111', bits abcd = 1111
|-
| 1 || 1 || 1 || 1 || 0 || colspan="8" |
| rowspan="3" | || || ±Infinity
|-
| 1 || 1 || 1 || 1 || 1 ||0
| colspan="7" |
|
| quiet NaN
|-
|1
|1
|1
|1
|1
|1
| colspan="7" |
|
|signaling NaN (with payload in significand)
|}
The DPD/3BCD transcoding for the declets is given by the following table. b9...b0 are the bits of the DPD, and d2...d0 are the three BCD digits.
Line 104 ⟶ 168:
The 8 decimal values whose digits are all 8s or 9s have four codings each.
The bits marked x in the table above are [[don't care|ignored]] on input, but will always be 0 in computed results.
(The
In the above cases, with the ''true significand'' as the sequence of decimal digits decoded, the value represented is
Line 112 ⟶ 176:
== See also ==
* [[ISO/IEC 10967]], Language Independent Arithmetic
* [[Primitive data type]]
* [[D notation (scientific notation)]]
== References ==
Line 121 ⟶ 185:
[[Category:Computer arithmetic]]
[[Category:Data types]]
[[Category:Floating point types]]
|