Content deleted Content added
m →1950s |
Randy Kryn (talk | contribs) →2000s: uppercase per direct link (Rubik's Cube) |
||
(82 intermediate revisions by 28 users not shown) | |||
Line 1:
{{short description|None}}
This is a timeline of key developments in [[computational mathematics]].
== 1940s ==
* Monte Carlo simulation (voted one of the top 10 [[algorithm]]s of the 20th century) invented at Los Alamos by von Neumann, Ulam and Metropolis.<ref>{{cite journal|last=Metropolis|first=N.|title=The Beginning of the Monte Carlo method|journal=Los Alamos Science|year=1987|volume=
* Dantzig introduces the [[simplex method|simplex algorithm]] (voted one of the top 10 algorithms of the 20th century).<ref>{{cite web|title=SIAM News, November 1994.|url=http://www.stanford.edu/group/SOL/dantzig.html|accessdate=6 June 2012}} Systems Optimization Laboratory, Stanford University Huang Engineering Center (site host/mirror).</ref>
* First [[Computational Fluid Dynamics|hydro simulations]] at Los Alamos occurred.<ref>Richtmyer, R. D. (1948). Proposed Numerical Method for Calculation of Shocks. Los Alamos, NM: Los Alamos Scientific Laboratory LA-671.</ref><ref>A Method for the Numerical Calculation of Hydrodynamic Shocks.
Von Neumann, J.; Richtmyer, R. D. Journal of Applied Physics, Vol. 21,
* Ulam and von Neumann introduce the notion of cellular automata.<ref>Von Neumann, J., Theory of Self-
* [[Manchester Small-Scale Experimental Machine#First programs|A routine for the Manchester Baby]] written to factor a large number (2^18), one of the first in [[computational number theory]].<ref>[http://curation.cs.manchester.ac.uk/digital60/www.digital60.org/birth/manchestercomputers/mark1/manchester.html The Manchester Mark 1.]</ref> The Manchester group would make several other breakthroughs in [[Mersenne primes|this area]].<ref>[http://news.bbc.co.uk/2/hi/technology/7465115.stm One tonne 'Baby' marks its birth: Dashing times.] By Jonathan Fildes, Science and technology reporter, BBC News.</ref>
* LU decomposition technique first discovered.
== 1950s ==
* [[Magnus Hestenes|Hestenes]], [[Eduard Stiefel|Stiefel]], and [[Cornelius Lanczos|Lanczos]], all from the Institute for Numerical Analysis at the [[NIST|National Bureau of Standards]], initiate the development of [[Iterative method|Krylov subspace iteration method]]s.<ref>Magnus R. Hestenes and Eduard Stiefel, Methods of Conjugate Gradients for Solving Linear Systems, J. Res. Natl. Bur. Stand. 49, 409–436 (1952).</ref><ref>Eduard Stiefel, U¨ ber einige Methoden der Relaxationsrechnung (in German), Z. Angew. Math. Phys. 3, 1–33 (1952).</ref><ref>Cornelius Lanczos, Solution of Systems of Linear Equations by Minimized Iterations, J. Res. Natl. Bur. Stand. 49, 33–53 (1952).</ref><ref>Cornelius Lanczos, An Iteration Method for the Solution of the Eigenvalue Problem of Linear Differential and Integral Operators, J. Res. Natl. Bur. Stand. 45, 255–282 (1950).</ref> Voted one of the top 10 algorithms of the 20th century.
* ''[[Equations of State Calculations by Fast Computing Machines]]'' introduces the [[Metropolis–Hastings algorithm]].<ref>{{cite journal
|first1=N. |last1=Metropolis |authorlink1=Nicholas Metropolis
Line 14 ⟶ 20:
|first4=A.H. |last4=Teller
|first5=E. |last5=Teller |authorlink5=Edward Teller
|title=
|journal=[[Journal of Chemical Physics]]
|volume=21 |issue=6 |pages=1087–1092 |year=1953
|doi=10.1063/1.1699114
|bibcode = 1953JChPh..21.1087M |title-link=Equations of State Calculations by Fast Computing Machines |osti=4390578 |s2cid=1046577 }}</ref> Also, important earlier independent work by Alder and S. Frankel.<ref>Unfortunately, Alder's thesis advisor was unimpressed, so Alder and Frankel delayed publication of their results until much later. [http://scitation.aip.org/content/aip/journal/jcp/23/3/10.1063/1.1742004 Alder, B. J.
* [[Enrico Fermi]], [[Stanislaw Ulam]],
*In network theory, Ford & Fulkerson compute [[Ford–Fulkerson algorithm|a solution to the maximum flow problem]].<ref>Ford, L. R.; Fulkerson, D. R. (1956). [http://www.cs.yale.edu/homes/lans/readings/routing/ford-max_flow-1956.pdf "Maximal flow through a network"] . [[Canadian Journal of Mathematics]]. 8: 399–404.</ref>
* Molecular dynamics invented by Alder and Wainwright<ref>Alder, B. J.; T. E. Wainwright (1959). "Studies in Molecular Dynamics. I. General Method". J. Chem. Phys. 31 (2): 459. Bibcode 1959JChPh..31..459A. doi:10.1063/1.1730376</ref>▼
* Householder invents his [[Householder matrix|eponymous matrices]] and [[Householder transformation|transformation method]] (voted one of the top 10 algorithms of the 20th century).<ref>{{cite journal|first=A. S. |last=Householder |title=Unitary Triangularization of a Nonsymmetric Matrix|journal=[[Journal of the ACM]]
|volume=5 |issue=4 |year=1958 |pages=339–342|doi=10.1145/320941.320947 |mr=0111128|s2cid=9858625 |url=https://hal.archives-ouvertes.fr/hal-01316095/file/p339householderb.pdf }}</ref>
▲* Molecular dynamics invented by Alder and Wainwright<ref>Alder, B. J.; T. E. Wainwright (1959). "Studies in Molecular Dynamics. I. General Method". J. Chem. Phys. 31 (2): 459. Bibcode 1959JChPh..31..459A. doi:10.1063/1.1730376</ref>
* [[John G.F. Francis]]
J. G. F. Francis, "The QR Transformation, I", ''The Computer Journal'', vol. 4, no. 3, pages 265–271 (1961, received Oct 1959) [http://comjnl.oxfordjournals.org/cgi/content/abstract/4/3/265 online at oxfordjournals.org];<br />
J. G. F. Francis, "The QR Transformation, II" ''The Computer Journal'', vol. 4, no. 4, pages == 1960s ==
* [[finite element method#History|First recorded use]] of the term "finite element method" by [[Ray W. Clough|Ray Clough]],<ref>RW Clough, “The Finite Element Method in Plane
Stress Analysis,” Proceedings of 2nd ASCE Conference on Electronic Computation, Pittsburgh, PA, Sept. 8, 9, 1960.</ref> to describe the methods of Courant, Hrenikoff and Zienkiewicz, among others. See also [[Structural analysis#Timeline|here]].
* Using computational investigations of the [[3
* Molecular dynamics was invented independently by [[Aneesur Rahman]].<ref>{{cite journal|last=Rahman|first=A|title=Correlations in the Motion of Atoms in Liquid Argon|journal=Phys Rev|year=1964|volume=136|issue=2A|pages=A405–A41|doi=10.1103/PhysRev.136.A405|bibcode = 1964PhRv..136..405R }}</ref>
* Cooley and Tukey re-invent the [[Fast Fourier transform]] (voted one of the top 10 algorithms of the 20th century), an algorithm first discovered by [[Gauss]].
* [[Martin Kruskal|Kruskal]] and [[Norman Zabusky|Zabusky]] follow up the [[Fermi-Pasta-Ulam problem]] with further numerical experiments, and coin the term "soliton".<ref>Zabusky, N. J.; Kruskal, M. D. (1965). "Interaction of 'solitons' in a collisionless plasma and the recurrence of initial states". Phys. Rev. Lett. 15 (6): 240–243. Bibcode 1965PhRvL..15..240Z. doi:10.1103/PhysRevLett.15.240.</ref><ref>http://www.merriam-webster.com/dictionary/soliton ; retrieved 3 nov 2012.</ref>▼
* [[Edward Lorenz]] discovers the [[butterfly effect]] on a computer, attracting interest in [[chaos theory]].<ref>{{cite journal|last=Lorenz|first=Edward N.|title=Deterministic Nonperiodic Flow|journal=Journal of the Atmospheric Sciences
▲* [[Martin Kruskal|Kruskal]] and [[Norman Zabusky|Zabusky]] follow up the [[
* [[Birch and Swinnerton-Dyer conjecture]] formulated through investigations on a computer.<ref>Birch, Bryan; Swinnerton-Dyer, Peter (1965). "Notes on Elliptic Curves (II)". J. Reine Angew. Math. 165 (218): 79–108. doi:10.1515/crll.1965.218.79.</ref>
* Grobner bases and Buchberger's algorithm invented for algebra<ref>Bruno Buchberger: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal (PDF; 1,8 MB). 1965</ref>
* Frenchman Verlet (re)discovers [[Verlet integration|a numerical integration algorithm]],<ref name="Verlet">{{cite journal
| first=Loup | last=Verlet| authorlink=Loup Verlet
Line 42 ⟶ 51:
| year = 1967
| volume = 159
| issue=1| pages = 98–103
| doi=10.1103/PhysRev.159.98
|bibcode = 1967PhRv..159...98V | doi-access=free
</ref> hence the alternative names Störmer's method or the Verlet-Störmer method) for dynamics
* Risch invents algorithm for symbolic integration.<ref>Risch, R. H. (1969). "The problem of integration in finite terms". Transactions of the American Mathematical Society. American Mathematical Society. 139: 167–189. doi:10.2307/1995313. JSTOR 1995313.
Risch, R. H. (1970). "The solution of the problem of integration in finite terms". Bulletin of the American Mathematical Society. 76 (3): 605–608. doi:10.1090/S0002-9904-1970-12454-5.</ref>
== 1970s ==
* Mandelbrot, from studies of the [[Fatou set|Fatou]], [[Julia set|Julia]] and [[Mandelbrot set]]s, coined and popularized the term 'fractal' to describe these structures' [[self-similarity]].<ref>B. Mandelbrot; ''Les objets fractals, forme, hasard et dimension '' (in French). Publisher: Flammarion (1975), {{ISBN
*Kenneth Appel and Wolfgang Haken prove the [[four colour theorem]], the [[Computer-assisted proof#
</ref><ref>Appel, K. and Haken, W. "The Solution of the Four-Color Map Problem." Sci. Amer. 237,
== 1980s ==
* [[Fast multipole method]] invented by Rokhlin and
==1990s==
* The appearance of the first research grids using [[volunteer computing]]
* [[Kepler conjecture]] is
==2000s==
*In computational group theory, [[Optimal solutions for Rubik's Cube|God's Number]] for the [[Rubik's Cube]] is shown to be 20.<ref>[http://blog.computationalcomplexity.org/2010/09/rubiks-cube-conjecture-proven-do-we.html The Rubik's Cube Conjecture PROVEN! (Do we care?)] Wednesday, September 08, 2010</ref><ref>[http://www.cube20.org God's Number is 20.]</ref>
*Mathematicians completely map the E8-group.<ref>[https://news.mit.edu/2007/e8 Math research team maps E8: Calculation on paper would cover Manhattan.] MIT News. Elizabeth A. Thomson, News Office; March 18, 2007.</ref><ref>[https://www.math.columbia.edu/~woit/wordpress/?p=534 E8 Media Blitz], [[Peter Woit]].</ref><ref>[https://www.huliq.com/15695/mathematicians-map-e8 Mathematicians Map E8.] {{Webarchive|url=https://web.archive.org/web/20150924032322/http://www.huliq.com/15695/mathematicians-map-e8 |date=2015-09-24 }} By Armine Hareyan 2007-03-20 02:21.</ref>
==2010s==
* Hales completes the proof of Kepler's conjecture.<ref>[http://blog.kleinproject.org/?p=742 What is the way of packing oranges? — Kepler's conjecture on the packing of spheres.] Posted on May 26, 2015 by Antoine Nectoux. Klein Project Blog: Connecting mathematical worlds.</ref><ref>[https://code.google.com/p/flyspeck/wiki/AnnouncingCompletion Announcement of Completion.] Flyspeck Project, [[Google Code]].</ref><ref>[https://www.newscientist.com/article/dn26041-proof-confirmed-of-400-year-old-fruit-stacking-problem/ Proof confirmed of 400-year-old fruit-stacking problem.] [[New Scientist]], 12 August 2014.
</ref>
== See also ==
Line 67 ⟶ 86:
* [[Timeline of mathematics#20th century|Timeline of mathematics from the 20th century onwards]]
* [[Timeline of numerical analysis after 1945]]
{{subject bar|portal1=Science
== References ==
Line 74 ⟶ 93:
== External links ==
* [https://web.archive.org/web/20140822045448/http://home.gwu.edu/~stroud/mc-classics.html The Monte Carlo Method: Classic Papers]
* [http://scienze-como.uninsubria.it/bressanini/montecarlo-history/ Monte Carlo Landmark Papers]
|