#REDIRECT [[Elementary matrix]]
[[ja:行列の基本変形]]
[[de:Elementarmatrix]]
'''Elementary matrix transformations''' or '''Elementary row and column transformations''' are [[Linear transformation|linear transformations]] which are normally used in [[Gauss elimination method|gauss elimination]] to solve a set of linear equations.
[[is:Frumfylki]]
[[ja:行列の基本変形]]
We distinguish three types of elementary transformations and their corresponding matrices:
[[zh:初等變換]]
# '''Row switching''' transformations,
# '''Row multiplying''' transformations,
# '''Linear combinator''' transformations.
===1. Row switching transformations===
This transformation, ''T<sub>ij</sub>'', switches all matrix elements on row i with their counterparts on row j. The matrix resulting in this transformation is:<br>
:<math>
T_{i,j} = \begin{bmatrix} 1 & & & & & & & \\ & \ddots & & & & & & \\ & & 0 & & 1 & & \\ & & & \ddots & & & & \\ & & 1 & & 0 & & \\ & & & & & & \ddots & \\ & & & & & & & 1\end{bmatrix},\quad </math>
:That is, ''T<sub>ij</sub>'' is the matrix produced by exchanging row ''i'' and row ''j'' of the identity matrix.
====Properties====
:*The inverse of this matrix is itself: ''T<sub>ij</sub><sup>-1</sup>=T<sub>ij</sub>''.
:*When applied to a matrix ''A'': ''det[TA]=-det[A]''.
:*The matrix T is square.
===2. Row multiplying transformations===
This transformation, ''T<sub>i</sub>(m)'', multiplies all elements on row i with ''m''. The matrix resulting in this transformation is:<br>
:<math>
T_i(m) = \begin{bmatrix} 1 & & & & & & & \\ & \ddots & & & & & & \\ & & 1 & & & & & \\ & & & m & & & & \\ & & & & & 1 & & \\ & & & & & & \ddots & \\ & & & & & & & 1\end{bmatrix},\quad </math>
====Properties====
:*The inverse of this matrix is: ''T<sub>i</sub>(m)<sup>-1</sup>=T<sub>i</sub>(1/m)''.
:*When applied to a matrix ''A'': ''det[TA]=mdet[A]''.
:*The matrix and its inverse are lower triangular matrices.
===3. Linear combinator transformations===
This transformation, ''T<sub>ij</sub>(m)'', subtracts row i multiplied by ''m'' from row j. The matrix resulting in this transformation is:<br>
:<math>
T_{i,j}(m) = \begin{bmatrix} 1 & & & & & & & \\ & \ddots & & & & & & \\ & & 1 & & & & & \\ & & & \ddots & & & & \\ & & -m & & 1 & & \\ & & & & & & \ddots & \\ & & & & & & & 1\end{bmatrix}
</math>
====Properties====
:*The inverse of this matrix is: ''T<sub>ij</sub>(m)<sup>-1</sup>=T<sub>ij</sub>(-m)''.
:*When applied to a matrix ''A'': ''det[TA]=det[A]''.
:*The matrix and its inverse are lower triangular matrices.
'''See also'''
*[[Linear algebra]]
*[[Gauss elimination method]]
|