Sinhc function: Difference between revisions

Content deleted Content added
Change target Sinc_function#Sinhc to since the Hyperbolic functions page has nothing to say on the matter
Tag: Redirect target changed
 
(27 intermediate revisions by 17 users not shown)
Line 1:
#REDIRECT [[Sinc_function#Sinhc]]
In mathematics, the '''Sinhc function''' appears frequently in papers about optical scattering,<ref>PN Den Outer, TM Nieuwenhuizen, A Lagendijk,Location of objects in multiple-scattering media,JOSA A, Vol. 10, Issue 6, pp. 1209-1218 (1993)</ref> Heisenberg Spacetime<ref>T Körpinar ,New characterizations for minimizing energy of biharmonic particles in Heisenberg spacetime - International Journal of Theoretical Physics, 2014 - Springer</ref> and hyperbolic geometry.<ref>Nilg¨un S¨onmez,A Trigonometric Proof of the Euler Theorem in Hyperbolic Geometry,International Mathematical Forum, 4, 2009, no. 38, 1877 - 1881</ref> It is defined as<ref>JHM ten Thije Boonkkamp, J van Dijk, L Liu,Extension of the complete flux scheme to systems of conservation laws,J Sci Comput (2012) 53:552–568,DOI 10.1007/s10915-012-9588-5</ref><ref>Weisstein, Eric W. "Sinhc Function." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/SinhcFunction.html</ref>
 
{{Rcat shell|
: <math>\operatorname{Sinhc}(z)=\frac {\sinh(z) }{z}</math>
{{R to related topic}}
 
|}}
It is a solution of the following differential equation:
 
: <math>w(z) z-2\,\frac {d}{dz} w (z) -z \frac {d^2}{dz^2} w (z) =0</math>
 
[[File:Sinhc 2D plot.png|thumb|Sinhc 2D plot]]
[[File:Sinhc'(z) 2D plot.png|thumb|Sinhc'(z) 2D plot]]
[[File:Sinhc integral 2D plot.png|thumb|Sinhc integral 2D plot]]
 
;Imaginary part in complex plane
*<math> \operatorname{Im} \left( \frac {\sinh(x+iy) }{x+iy} \right) </math>
;Real part in complex plane
*<math> \operatorname{Re} \left( \frac {\sinh(x+iy) }{x+iy} \right) </math>
;absolute magnitude
*<math> \left| \frac {\sinh(x+iy) }{x+iy} \right| </math>
;First-order derivative
*<math> \frac {1- \sinh(z))^2}{z} - \frac {\sinh(z)}{z^2} </math>
;Real part of derivative
*<math> -\operatorname{Re} \left( -\frac {1- (\sinh(x+iy))^2}{x+iy} +\frac{\sinh(x+iy)}{(x+iy)^2} \right)
</math>
;Imaginary part of derivative
*<math>-\operatorname{Im} \left( -\frac {1-(\sinh(x+iy))^2}{x+iy} + \frac {\sinh(x+iy)}{(x+iy)^2} \right)
</math>
;absolute value of derivative
*<math> \left| -\frac{1-(\sinh(x+iy))^2}{x+iy}+\frac {\sinh(x+iy)}{(x+iy)^2} \right| </math>
 
==In terms of other special functions==
 
* <math>\operatorname{Sinhc}(z)=\frac {{\rm KummerM}(1,\,2,\,2\,z)}{{\rm e}^z}</math>
 
*<math>\operatorname{Sinhc}(z)=\frac {\operatorname{HeunB} \left( 2,0,0,0,\sqrt {2}\sqrt {z} \right) }{{\rm e}^z} </math>
 
* <math>\operatorname{Sinhc}(z)=1/2\,\frac {{{\rm WhittakerM}(0,\,1/2,\,2\,z)}}{z} </math>
 
==Series expansion==
 
: <math>\operatorname{Sinhc} z \approx \left(1+\frac {1}{3} z^2+\frac{2}{15}z^4+\frac {17}{315}z^6 + \frac{62}{2835} z^8 +\frac{1382}{155925} z^{10}+ \frac{21844}{6081075} z^{12} +\frac {929569}{638512875} z^{14}+O (z^{16}) \right)</math>
==Pade approximation==
<math> {\it Sinhc} \left( z \right) = \left( 1+{\frac {53272705}{360869676}}
\,{z}^{2}+{\frac {38518909}{7217393520}}\,{z}^{4}+{\frac {269197963}{
3940696861920}}\,{z}^{6}+{\frac {4585922449}{15605159573203200}}\,{z}^
{8} \right) \left( 1-{\frac {2290747}{120289892}}\,{z}^{2}+{\frac {
1281433}{7217393520}}\,{z}^{4}-{\frac {560401}{562956694560}}\,{z}^{6}
+{\frac {1029037}{346781323848960}}\,{z}^{8} \right) ^{-1}
</math>
 
==Gallery==
{|
|[[File:Sinhc abs complex 3D plot.png|thumb|Sinhc abs complex 3D]]
|[[File:Sinhc Im complex 3D plot.png|thumb|Sinhc Im complex 3D plot]]
|[[File:Sinhc Re complex 3D plot.png|thumb|Sinhc Re complex 3D plot]]
|}
{|
|[[File:Sinhc'(z) Im complex 3D plot.png|thumb|Sinhc'(z) Im complex 3D plot]]
|[[File:Sinhc'(z) Re complex 3D plot.png|thumb|Sinhc'(z) Re complex 3D plot]]
|[[File:Sinhc'(z) abs complex 3D plot.png|thumb|Sinhc'(z) abs complex 3D plot]]
|
|}
 
{|
|[[File:Sinhc abs plot.JPG|thumb|Sinhc abs plot]]
|[[File:Sinhc Im plot.JPG|thumb|Sinhc Im plot]]
|[[File:Sinhc Re plot.JPG|thumb|Sinhc Re plot]]
|}
{|
|[[File:Sinhc'(z) Im plot.JPG|thumb|Sinhc'(z) Im plot]]
|[[File:Sinhc'(z) abs plot.JPG|thumb|Sinhc'(z) abs plot]]
|[[File:Sinhc'(z) Re plot.JPG|thumb|Sinhc'(z) Re plot]]
|}
 
==See also==
[[Tanc function]]
[[Tanhc function]]
[[Sinhc integral]]
[[Coshc function]]
 
==References==
<references/>
 
[[Category:Special functions]]