Extended discrete element method: Difference between revisions

Content deleted Content added
Monurin (talk | contribs)
#suggestededit-add-desc 1.0
Tags: Mobile edit Mobile app edit Android app edit
 
(17 intermediate revisions by 11 users not shown)
Line 1:
{{Short description|Granular material interaction simulation technique}}
[[File:Internal temperature distribution in a particle.png|thumb|An internal temperature distribution for a spherical particle versus radius and time under a time-varying [[heat flux]].]]
 
Line 20 ⟶ 21:
| authorlink2=D. J. Tildesley
| title=Computer Simulation of Liquids
| publisher=ClaredonClarendon Press Oxford
| year=1990}}</ref>) by additional properties such as the [[thermodynamic]] state, [[Stress (mechanicalmechanics)|stress]]/[[Deformation (mechanics)|strain]] or [[electro-magnetic]] field for each particle. Contrary to a [[continuum mechanics]] concept, the XDEM aims at resolving the particulate phase with its various processes attached to the particles. While the discrete element method predicts position and orientation in space and time for each particle, the extended discrete element method additionally estimates properties such as internal [[temperature]] and/or [[species]] distribution or mechanical impact with structures.
 
==History==
Line 34 ⟶ 35:
| year=1959
| volume=31
| pagesissue=4592
| pages=459–466
| doi=10.1063/1.1730376
| bibcode=1959JChPh..31..459A}}</ref> and early 1960s by Rahman<ref>{{cite journal
Line 43 ⟶ 45:
| year=1964
| volume=136
| issue=2A
| doi=10.1103/physrev.136.a405
| pages=A405–A411
Line 58 ⟶ 61:
| year=1993
| volume=77
| doi=10.1016/0032-5910(93)85010-7
| pages=79–87
}}</ref> Hoomans,<ref>{{cite journal
| first1=B. P. B.
Line 71 ⟶ 76:
| year=1996
| volume=51
| doi=10.1016/0009-2509(95)00271-5
| pages=99–118
| citeseerx=10.1.1.470.6532
| s2cid=17460834
}}</ref> Xu 1997<ref>{{cite journal
| first1=B. H.
Line 80 ⟶ 89:
| year=1997
| volume=52
| issue=16
| pages=2785–2809
| doi=10.1016/s0009-2509(97)00081-x
Line 91 ⟶ 101:
| year=1998
| volume=53
| issue=14
| pages=2646–2647
| doi=10.1016/s0009-2509(98)00086-4
}}</ref> Due to a discrete description of the solid phase, [[constitutive equation|constitutive]] relations are omitted, and therefore, leads to a better understanding of the fundamentals. This was also concluded by Zhu 2007 et al.<ref>{{cite journal
| first1=H. P.
Line 105 ⟶ 117:
| year=2007
| volume=62
| issue=13
| pages=3378–3396
| doi=10.1016/j.ces.2006.12.089
Line 120 ⟶ 133:
| year=2008
| volume=63
| issue=23
| pages=5728–5770
| doi=10.1016/j.ces.2008.08.006
Line 131 ⟶ 145:
| year=2003
| volume=78
| issue=2–3
| pages=111–121
| doi=10.1002/jctb.788
Line 146 ⟶ 161:
| year=2004
| volume=43
| issue=26
| pages=8378–8390
| doi=10.1021/ie049387v
Line 161 ⟶ 177:
| year=2007
| volume=62
| issue=1–2
| pages=28–44
| doi=10.1016/j.ces.2006.08.014
Line 180 ⟶ 197:
| year=2009
| volume=87
| issue=2
| pages=318–328
| doi=10.1002/cjce.20143
| citeseerx=10.1.1.335.4108
}}</ref>
 
Line 191 ⟶ 210:
| year=1999
| volume=116
| issue=1–2
| pages=297–301
| doi=10.1016/s0010-2180(98)00048-0
Line 200 ⟶ 220:
| year=2002
| volume=131
| issue=1–2
| pages=132–146
| doi=10.1016/s0010-2180(02)00393-0
Line 217 ⟶ 238:
| year=2009
| volume=193
| issue=3
| pages=266–273
| doi=10.1016/j.powtec.2009.03.011
Line 238 ⟶ 260:
| year=2010
| volume=50
| issue=2
| pages=207–214
| doi=10.2355/isijinternational.50.207
| doi-access=free
}}</ref> Numerical simulation of fluid injection into a gaseous environment nowadays is adopted by a large number of CFD-codes codes such as Star-CD of [[CDSimcenter STAR-adapcoCCM+]], [[Ansys]] and [[AVL (Engineering Firm)|AVL]]-Fire. Droplets of a spray are treated by a zero-dimensional approach to account for heat and mass transfer to the fluid phase.
 
==Methodology==
Line 299 ⟶ 323:
| year=1996
| volume=105
| issue=4
| pages=591–599
| doi=10.1016/0010-2180(96)00221-0
Line 322 ⟶ 347:
| year=1996
| volume=51
| doi=10.1016/0009-2509(95)00271-5
| pages=99–118
| citeseerx=10.1.1.470.6532
| s2cid=17460834
}}</ref> however, Chu and Yu<ref>{{cite journal
| first1=K. W.
Line 331 ⟶ 360:
| year=2008
| volume=179
| issue=3
| pages=104–114
| doi=10.1016/j.powtec.2007.06.017
Line 346 ⟶ 376:
| year=2011
| volume=90
| issue=4
| pages=1584–1590
| doi=10.1016/j.fuel.2010.10.017
Line 365 ⟶ 396:
| year=2009
| volume=22
| issue=11
| pages=893–909
| doi=10.1016/j.mineng.2009.04.008
Line 378 ⟶ 410:
| year=1976
| volume=15
| issue=2
| pages=141–147
| doi=10.1016/0032-5910(76)80042-3
Line 393 ⟶ 426:
| year=2004
| volume=43
| issue=26
| pages=8378–8390
| doi=10.1021/ie049387v
Line 404 ⟶ 438:
| year=2008
| volume=6
| issue=6
| pages=549–556
| doi=10.1016/j.partic.2008.07.011
Line 417 ⟶ 452:
| year=2002
| volume=57
| issue=13
| pages=2395–2410
| doi=10.1016/s0009-2509(02)00140-9
}}</ref> describe discrete particle-continuum fluid modelling of gas-solid fluidised beds. Further applications of XDEM include thermal conversion of biomass on a backward and forward acting grate. Heat transfer in athermal/reacting [[packedparticulate bed]] reactorsystems was also solved and investigated, foras hotcomprehensively airreviewed streamingby upwardPeng throughet theal.<ref packedname="Peng">{{cite bedjournal to|last1=Peng heat|first1=Z. the|last2=Doroodchi particles,|first2=E. which|last3=Moghtaderi dependent|first3=B. on|date=2020 |title=Heat transfer modelling in Discrete Element Method (DEM)-based simulations of thermal processes: positionTheory and sizemodel experiencedevelopment different|journal=Progress heatin transferEnergy ratesand Combustion Science |volume=79,100847 |page=100847 |doi=10.1016/j.pecs.2020.100847|s2cid=218967044 }}</ref> The [[deformation (engineering)|deformation]] of a conveyor belt due to impacting [[granular material]] that is discharged over a chute represents an application in the field of [[Stress (mechanicalmechanics)|stress]]/[[Deformation (mechanics)|strain]] analysis.
 
{|