Content deleted Content added
→top: +Picture |
|||
(46 intermediate revisions by 29 users not shown) | |||
Line 1:
[[Image:Urbain Le Verrier.jpg|220px|thumb|right|[[Urbain Le Verrier]] (1811–1877)<br> The discoverer of [[Neptune]].]]
In mathematics ([[linear algebra]]), the '''Faddeev–LeVerrier algorithm''' is a [[Recurrence relation|recursive]] method to calculate the coefficients of the [[characteristic polynomial]] <math>
The algorithm has been independently rediscovered several times
{{cite book
▲{{cite book|ref=harv|first=Alston S.|last=Householder|title=The Theory of Matrices in Numerical Analysis |publisher=Dover Books on Mathematics|year=2006|authorlink=Alston Scott Householder | isbn=0486449726}}</ref> An elegant shortcut to the proof, bypassing [[Newton polynomial]]s, was introduced by Hou.<ref>Hou, S. H. (1998). [http://epubs.siam.org/doi/pdf/10.1137/S003614459732076X "Classroom Note: A Simple Proof of the Leverrier--Faddeev Characteristic Polynomial Algorithm"] ''SIAM review'' '''40(3)''' 706-709, {{doi|10.1137/S003614459732076X}} .</ref> The bulk of the presentation here follows Gantmacher, p. 88.<ref>{{cite book|ref=harv| last= Gantmacher|first=F.R. | title=The Theory of Matrices |year=1960| publisher= Chelsea Publishing|___location= NY | ISBN = 0-8218-1376-5 }}</ref>)
==The Algorithm==
The objective is to calculate the coefficients {{math|''c<sub>k</sub>''}} of the characteristic polynomial of the {{math|''n''×''n''}} matrix {{mvar|A}},
::<math>
where, evidently,
The coefficients {{math|''c<sub>n − i</sub>''}} are determined by induction on {{mvar|i}}, using an auxiliary sequence of matrices
:<math> \begin{align}
M_0 &\equiv 0 & c_n &= 1 \qquad &(k=0) \\
Line 19:
Thus,
:<math>
M_1= I ~, \quad c_{n-1} = - \mathrm{tr} A =-c_n \mathrm{tr} A ;
:<math>M_2= A-I\mathrm{tr} A , \quad c_{n-2}=-\frac{1}{2}\Bigl(\mathrm{tr} A^2 -(\mathrm{tr} A)^2\Bigr) = -\frac{1}{2} (c_n \mathrm{tr} A^2 +c_{n-1} \mathrm{tr} A) ;
</math>
:<math>M_3= A^2-A\mathrm{tr} A -\frac{1}{2}\Bigl(\mathrm{tr} A^2 -(\mathrm{tr} A)^2\Bigr) I,
::<math>c_{n-3}=- \tfrac{1}{6}\Bigl( (\operatorname{tr}A)^3-3\operatorname{tr}(A^2)(\operatorname{tr}A)+2\operatorname{tr}(A^3)\Bigr)=-\frac{1}{3}(c_n \mathrm{tr} A^3+c_{n-1} \mathrm{tr} A^2 +c_{n-2}\mathrm{tr} A); </math> etc.,<ref>Zadeh, Lotfi A. and Desoer, Charles A. (1963, 2008). ''Linear System Theory: The State Space Approach'' (Mc Graw-Hill; Dover Civil and Mechanical Engineering) {{ISBN
</ref><ref>Abdeljaoued, Jounaidi and Lombardi, Henri (2004). ''Méthodes matricielles - Introduction à la complexité algébrique'',
<math>\cdots ; \qquad c_{n-m}= -\frac{1}{m}(c_n \mathrm{tr} A^m+c_{n-1} \mathrm{tr} A^{m-1}+...+c_{n-m+1}\mathrm{tr} A)= -\frac{1}{m}\sum_{k=1}^{m} c_{n-m+k} \mathrm{tr} A^k ; \qquad \cdots </math>▼
(Mathématiques et Applications, 42) Springer, {{ISBN|3540202471}} .</ref>
...;
:<math>M_m= \sum_{k=1}^{m} c_{n-m+k} A^{k-1} ~,</math>
▲
Observe {{math|''A<sup>−1</sup> {{=}} − M<sub>n</sub> /c<sub>0</sub>'' {{=}} (
==Derivation==
The proof relies on the modes of the [[adjugate matrix]], {{math|''B<sub>k</sub> ≡ M<sub>n−k</sub>''}}, the auxiliary matrices encountered.
This matrix is defined by
::<math>(\lambda I-A) B = I ~
and is thus proportional to the [[Resolvent formalism|resolvent]]
:<math>B =
It is evidently a matrix polynomial in {{math|''λ''}} of
::<math>B\equiv \sum_{k=0}^{n-1} \lambda^k~ B_k= \sum_{k=0}^{n} \lambda^k~ M_{n-k} ,</math>
where one may define the harmless {{math|''M''<sub>0</sub>}}≡0.
Line 47 ⟶ 53:
:<math>\sum_{k=1}^{n} \lambda^{k} \Big ( M_{1+n-k} - AM_{n-k} +c_k I\Big )= 0~,</math>
which thus dictates the recursion
:<math>\therefore \qquad M_{m} =A M_{m-1} +c_{n-m+1} I ~,</math>
for {{mvar|m}}=1,...,{{mvar|n}}. Note that ascending index amounts to descending in powers of {{mvar|λ}}, but the polynomial coefficients {{mvar|c}} are yet to be determined in terms of the {{mvar|M}}s and {{mvar|A}}.
This can be easiest achieved through the following auxiliary equation (Hou, 1998),
::<math>\lambda \frac{\partial
This is but the trace of
:<math>\frac{\partial
Inserting the polynomial mode forms in this auxiliary equation yields
Line 61 ⟶ 67:
:<math>\sum_{m=1}^{n-1} \lambda^{n-m} \Big ( m c_{n-m} + \operatorname{tr}A M_{m}\Big )= 0~,</math>
and finally
:<math>\therefore \qquad c_{n-m} = -\frac{1}{m} \operatorname{tr}A M_{m} ~.</math>
This completes the recursion of the previous section, unfolding in descending powers of {{mvar|λ}}.
Further note in the algorithm that, more directly,
:<math> M_{m} =A M_{m-1} - \frac{1}{m-1} (\operatorname{tr}A M_{m-1}) I ~,</math>
and, in comportance with the [[Cayley–Hamilton theorem]],
:<math> \operatorname{adj}(A) =(-1)^{n-1} M_{n}=(-1)^{n-1} (A^{n-1}+c_{n-1}A^{n-2}+ ...+c_2 A+ c_1 I)=(-1)^{n-1} \sum_{k=1}^n c_k A^{k-1}~.</math>
The final solution might be more conveniently expressed in terms of complete exponential [[Bell polynomials]] as
:<math> c_{n-k} = \frac{(-1)^{n-k}}{k!} {\mathcal B}_k \Bigl ( \operatorname{tr}A , -1! ~ \operatorname{tr}A^2, 2! ~\operatorname{tr}A^3, \ldots, (-1)^{k-1}(k-1)! ~ \operatorname{tr}A^k\Bigr ) .</math>
==Example==
:<math>{\displaystyle A=\left[{\begin{array}{rrr}3&1&5\\3&3&1\\4&6&4\end{array}}\right]}</math>
<math>{\displaystyle {\begin{aligned}M_{0}&=\left[{\begin{array}{rrr}0&0&0\\0&0&0\\0&0&0\end{array}}\right]\quad &&&c_{3}&&&&&=&1\\M_{\mathbf {\color {blue}1} }&=\left[{\begin{array}{rrr}1&0&0\\0&1&0\\0&0&1\end{array}}\right] &A~M_{1}&=\left[{\begin{array}{rrr}\mathbf {\color {red}3} &1&5\\3&\mathbf {\color {red}3} &1\\4&6&\mathbf {\color {red}4} \end{array}}\right] &c_{2}&&&=-{\frac {1}{\mathbf {\color {blue}1} }} \mathbf {\color {red}10} &&=&-10\\M_{\mathbf {\color {blue}2} }&=\left[{\begin{array}{rrr}-7&1&5\\3&-7&1\\4&6&-6\end{array}}\right]\qquad &A~M_{2}&=\left[{\begin{array}{rrr}\mathbf {\color {red}2} &26&-14\\-8&\mathbf {\color {red}-12} &12\\6&-14&\mathbf {\color {red}2} \end{array}}\right]\qquad &c_{1}&&&=-{\frac {1}{\mathbf {\color {blue}2} }} \mathbf {\color {red}(-8)} &&=&4\\M_{\mathbf {\color {blue}3} }&=\left[{\begin{array}{rrr}6&26&-14\\-8&-8&12\\6&-14&6\end{array}}\right]\qquad &A~M_{3}&=\left[{\begin{array}{rrr}\mathbf {\color {red}40} &0&0\\0&\mathbf {\color {red}40} &0\\0&0&\mathbf {\color {red}40} \end{array}}\right]\qquad &c_{0}&&&=-{\frac {1}{\mathbf {\color {blue}3} }}\mathbf {\color {red}120} &&=&-40\end{aligned}}} </math>
Furthermore, <math>{\displaystyle M_{4}=A~M_{3}+c_{0}~I=0}</math>, which confirms the above calculations.
The characteristic polynomial of matrix {{mvar|A}} is thus <math>{\displaystyle p_{A}(\lambda )=\lambda ^{3}-10\lambda ^{2}+4\lambda -40}</math>; the determinant of {{mvar|A}} is <math>{\displaystyle \det(A)=(-1)^{3} c_{0}=40}</math>; the trace is 10=−''c''<sub>2</sub>; and the inverse of {{mvar|A}} is
:<math>{\displaystyle A^{-1}=-{\frac {1}{c_{0}}}~ M_{3}={\frac {1}{40}} \left[{\begin{array}{rrr}6&26&-14\\-8&-8&12\\6&-14&6\end{array}}\right]=\left[{\begin{array}{rrr}0{.}15&0{.}65&-0{.}35\\-0{.}20&-0{.}20&0{.}30\\0{.}15&-0{.}35&0{.}15\end{array}}\right]} </math>.
==An equivalent but distinct expression==
A compact determinant of an {{mvar|m}}×{{mvar|m}}-matrix solution for the above Jacobi's formula may alternatively determine the coefficients {{mvar|c}},<ref>Brown, Lowell S. (1994). ''Quantum Field Theory'', Cambridge University Press. {{ISBN
▲A compact determinant of an {{mvar|m}}×{{mvar|m}}-matrix solution for the above Jacobi's formula may alternatively determine the coefficients {{mvar|c}}<ref>Brown, Lowell S. (1994). ''Quantum Field Theory'', Cambridge University Press. ISBN 978-0-521-46946-3, p. 54; Also see, Curtright, T. L. and Fairlie, D. B. (2012). "A Galileon Primer", arXiv:1212.6972 , section 3.</ref>
:<math>c_{n-m} = \frac{(-1)^m}{m!}
\begin{vmatrix} \operatorname{tr}A & m-1 &0&\cdots&0\\
\operatorname{tr}A^2 &\operatorname{tr}A& m-2 &\cdots&0\\
\vdots & \vdots & & & \vdots \\
\operatorname{tr}A^{m-1} &\operatorname{tr}A^{m-2}& \cdots & \cdots & 1 \\
\operatorname{tr}A^m &\operatorname{tr}A^{m-1}& \cdots & \cdots & \operatorname{tr}A \end{vmatrix} ~.</math>
== See also ==
* [[Characteristic polynomial]]
* [[Horner's method]]
* [[Fredholm determinant]]
==References==
{{reflist}}
Barbaresco F. (2019) Souriau Exponential Map Algorithm for Machine Learning on Matrix Lie Groups. In: Nielsen F., Barbaresco F. (eds) Geometric Science of Information. GSI 2019. Lecture Notes in Computer Science, vol 11712. Springer, Cham. https://doi.org/10.1007/978-3-030-26980-7_10
{{DEFAULTSORT:Faddeev-LeVerrier algorithm}}
|