Content deleted Content added
No edit summary |
Baryogenes (talk | contribs) Link suggestions feature: 1 link added. |
||
(13 intermediate revisions by 9 users not shown) | |||
Line 1:
'''Diffusing-wave spectroscopy''' ('''DWS''') is an
{{cite journal
|
|year=1987▼
|title=Multiple light scattering from disordered media. The effect of brownian motion of scatterers
|journal=[[Zeitschrift für Physik B]]
Line 8 ⟶ 7:
|doi=10.1007/BF01303762
|bibcode = 1987ZPhyB..65..409M
|issue=4 |s2cid=121962976 }}</ref><ref>
{{cite journal
|
|title=Diffusing wave spectroscopy
|journal=[[Physical Review Letters]]
|volume=60 |pages=
|doi=10.1103/PhysRevLett.60.1134
|bibcode=1988PhRvL..60.1134P
|issue=12
|pmid=10037950 }}</ref> It has been widely used in the past to study colloidal [[Suspension (chemistry)|suspension]]s, [[emulsions]], [[foams]], gels, biological media and other forms of [[soft matter]]. If carefully calibrated, DWS allows the quantitative measurement of microscopic motion in a soft material, from which the [[rheological]] properties of the complex medium can be extracted
==One-speckle diffusing-wave spectroscopy==
Line 30 ⟶ 28:
<math>g_2(\tau)=\frac{\langle I(t)I(t+\tau)\rangle_t}{\langle I(t)\rangle_t^2}</math>
For the case of non-interacting particles suspended in a (complex) fluid a direct relation between g<sub>2</sub>-1 and the [[mean squared displacement]] of the particles <Δr<sup>2</sup>> can be established. Let
{{cite journal
|author=
|author-link=Frank Scheffold
|title=New trends in optical microrheology of complex fluids and gels
|url=http://w3.lcvn.univ-montp2.fr/~lucacip/NewTrendsMicroRheology.pdf
|journal=[[Progress in Colloid and Polymer Science]]
|volume=123 |pages=141–146▼
|volume=123
|doi=10.1007/b11748▼
|isbn=978-3-540-00553-7▼
▲ |doi=10.1007/b11748
|display-authors=etal}}</ref>▼
▲ |isbn=978-3-540-00553-7
|url-status=dead
|archiveurl=https://web.archive.org/web/20110721023401/http://w3.lcvn.univ-montp2.fr/~lucacip/NewTrendsMicroRheology.pdf
|archivedate=2011-07-21
}}</ref>
<math>g_2(\tau)-1=[\int {ds P(s) \exp(-(s/l*)k_0^2 \langle\Delta r^2(\tau)\rangle) }]^2</math>
Line 52 ⟶ 56:
For less thick cells and in transmission, the relationship depends also on l* (the transport length).<ref>
{{cite book
|
|chapter=Diffusing-wave spectroscopy
|editor=W. Brown
Line 62 ⟶ 65:
}}</ref>
For quasi-transparent cells, an angle-independent variant method called cavity amplified scattering spectroscopy<ref>{{Cite journal |last1=Graciani |first1=Guillaume |last2=King |first2=John T. |last3=Amblard |first3=François |date=2022-08-30 |title=Cavity-Amplified Scattering Spectroscopy Reveals the Dynamics of Proteins and Nanoparticles in Quasi-transparent and Miniature Samples |url=https://pubs.acs.org/doi/10.1021/acsnano.2c06471 |journal=ACS Nano |volume=16 |issue=10 |language=en |pages=16796–16805 |doi=10.1021/acsnano.2c06471 |pmid=36039927 |arxiv=2111.09616 |s2cid=244345602 |issn=1936-0851}}</ref> makes use of an [[integrating sphere]] to isotropically probe samples from all directions, elongating photon paths through the sample in the process, allowing for the study of low turbidity samples under the DWS formalism.
==Multispeckle Diffusing-Wave Spectroscopy (MSDWS)==▼
This technique either uses a camera to detect many speckle grains (see [[speckle pattern]]) or a ground glass to create a large number of speckle realizations (Echo-DWS
<gallery>
Line 71 ⟶ 76:
<math>g_2(\tau)=\frac{\langle I(t)I(t+\tau)\rangle_p}{\langle I(t)\rangle_p^2}</math>
MSDWS is particularly adapted for the study of slow dynamics and non ergodic media. Echo-DWS allows seamless integration of MSDWS in a traditional DWS-scheme with superior [[temporal resolution]] down to 12 ns.<ref>
{{cite journal
|
|title=Multispeckle diffusing-wave spectroscopy with a single-mode detection scheme
|journal=[[Physical Review E]]
|volume=73 |issue=1 |pages=011413
|doi=10.1103/PhysRevE.73.011413
|pmid=16486146 |arxiv = cond-mat/0509637 |bibcode = 2006PhRvE..73a1413Z |s2cid=6251182 }}</ref> Camera based adaptive image processing allows online measurement of particle dynamics for example during drying.<ref>
{{cite journal
|author1=L. Brunel |author2=A. Brun |author3=P. Snabre |author4=L. Cipelletti |title=Adaptive Speckle Imaging Interferometry: a new technique for the analysis of microstructure dynamics, drying processes and coating formation▼
▲ |title=Adaptive Speckle Imaging Interferometry: a new technique for the analysis of microstructure dynamics, drying processes and coating formation
|url=http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-23-15250
|journal=[[Optics Express]]
Line 89 ⟶ 92:
|doi=10.1364/OE.15.015250
|bibcode = 2007OExpr..1515250B
|pmid=19550809|arxiv = 0711.1219 |s2cid=5753232 }}</ref>
==References==
{{
==External links==
*[https://web.archive.org/web/20110930154856/http://www.formulaction.com/technology_dws.html
*[http://www.lsinstruments.ch/technology/diffusing_wave_spectroscopy_dws/ Diffusing Wave Spectroscopy Overview with Animations] {{Webarchive|url=https://web.archive.org/web/20140520215951/http://www.lsinstruments.ch/technology/diffusing_wave_spectroscopy_dws |date=2014-05-20 }}
*[http://www.lsinstruments.ch/technology/diffusing_wave_spectroscopy_dws/dws_particle_sizing/ Particle Sizing using Diffusing Wave Spectroscopy] {{Webarchive|url=https://web.archive.org/web/20140520220247/http://www.lsinstruments.ch/technology/diffusing_wave_spectroscopy_dws/dws_particle_sizing/ |date=2014-05-20 }}
[[Category:Spectroscopy]]
|