Timeline of scientific computing: Difference between revisions

Content deleted Content added
m Miscelleaneous: Spelling/grammar correction
1920s: Wikilink Tabulating machine
 
(145 intermediate revisions by 51 users not shown)
Line 1:
{{short description|Computational science history}}
 
{{Multiple issues|
{{more citations needed|date=May 2017}}
{{too few opinions|date=May 2017}}
}}
 
The following is a '''timeline of scientific computing''', also known as '''computational science'''.
 
Line 4 ⟶ 11:
 
===18th century===
* Simpson rediscovers [[Simpson's rule|Simpson's '''rule''']], a century after [[Johannes Kepler]] (who derived it in 1615 after seeing it used for wine barrels).
* 1733 – The French naturalist Comte de Buffon poses [[Buffon's needle problem|his needle problem]] in 1733; generalized to the Buffon-Laplace problem, and then further into Clean Tile Problem.<ref>Buffon, G. Editor's note concerning a lecture given 1733 by Mr. Le Clerc de Buffon to the Royal Academy of Sciences in Paris. Histoire de l'Acad. Roy. des Sci., pp. 43-45, 1733; according to Weisstein, Eric W. [http://mathworld.wolfram.com/BuffonsNeedleProblem.html "Buffon's Needle Problem."] From MathWorld--A Wolfram Web Resource. 20 Dec 2012 20 Dec 2012.</ref><ref>Buffon, G. "Essai d'arithmétique morale." Histoire naturelle, générale er particulière, Supplément 4, 46-123, 1777; according to Weisstein, Eric W. [http://mathworld.wolfram.com/BuffonsNeedleProblem.html "Buffon's Needle Problem."] From MathWorld--A Wolfram Web Resource. 20 Dec 2012</ref>
* Euler comes up with [[Euler integration|a simple numerical method]] for integrands.<ref>[[Leonhard Euler|Euler, L]]. ''[[Institutionum calculi integralis]]''. Impensis Academiae Imperialis Scientiarum, 1768.</ref><ref>Butcher, John C. (2003), Numerical Methods for Ordinary Differential Equations, New York: John Wiley & Sons, {{ISBN|978-0-471-96758-3}}.</ref><ref>Hairer, Ernst; Nørsett, Syvert Paul; Wanner, Gerhard (1993), Solving ordinary differential equations I: Nonstiff problems, Berlin, New York: Springer-Verlag, {{ISBN|978-3-540-56670-0}}.</ref>
* c. 500 BCE - Urdhva Tiryakbhyam algorithm, a Vedic method for fast integer multiplication; foundational for Indian mathematics.<ref>{{Cite book |url=https://doi.org/10.54094/b-b5e8c492cc |title=The Rig-Vedic and Post-Rig-Vedic Polity (1500 BCE-500 BCE) [PDF, E-Book] |date=2020 |publisher=Vernon Press |doi=10.54094/b-b5e8c492cc |isbn=978-1-64889-001-7}}</ref>
* 300 BCE - Babylonian root extraction method, Earliest documented numerical algorithm for square roots.<ref>{{Citation |title=Timeline of algorithms |date=2025-05-13 |work=Wikipedia |url=https://en.wikipedia.org/w/index.php?title=Timeline_of_algorithms&oldid=1290132197 |access-date=2025-07-12 |language=en}}</ref>
* c. 250 BCE - Chinese Remainder Theorem    Systematic solution to simultaneous congruences; used in cryptography.<ref>{{Cite web |title=History of Algorithms |url=https://www.enjoyalgorithms.com/blog/history-of-algorithms/ |access-date=2025-07-12 |website=www.enjoyalgorithms.com}}</ref>
 
===19th century===
* First formulation of [[Gram–Schmidt process|Gram-Schmidt orthogonalisation]] by Laplace,<ref>Laplace, PS. (1816). Théorie Analytique des Probabilités :First Supplement, p. 497ff.</ref> to be further improved decades later.<ref>{{cite journal | last1 = Gram | first1 = J. P. | year = 1883 | title = Ueber die Entwickelung reeler Funtionen in Reihen mittelst der Methode der kleinsten Quadrate | journal = JRNL. Für die reine und angewandte Math. | volume = 94 | pages = 71–73 }}</ref><ref>{{cite journal | last1 = Schmidt | first1 = E. | title = Zur Theorie der linearen und nichtlinearen Integralgleichungen. I. Teil: Entwicklung willkürlicher Funktionen nach Systemen vorgeschriebener | journal = Math. Ann. | volume = 63 | page = 1907 }}</ref><ref>[http://jeff560.tripod.com/g.html#GRAM-SCHMIDT%20ORTHOGONALIZATION Earliest Known Uses of Some of the Words of Mathematics (G).] As of Aug 2017.</ref><ref>{{cite book|last1=Farebrother|first1=RW|title=Linear Least Squares Computations|date=1988|publisher=CRC Press|isbn=9780824776619|url=https://books.google.com/books?id=aCS0zw7SztEC|access-date=19 August 2017}}</ref>
* Babbage in 1822, began work on a machine made to compute/calculate values of polynomial functions automatically by using the method of finite differences. This was eventually called the [[Difference engine]].
* Lovelace's note G on the [[Analytical Engine]] (1842) describes an algorithm for generating [[Bernoulli numbers]]. It is considered the first algorithm ever specifically tailored for implementation on a computer, and thus the first-ever computer programme.<ref>{{cite web|last=Simonite|first=Tom|url=httphttps://www.newscientist.com/blogs/shortsharpscience/2009/03/ada-lovelace-day.html|title=Short Sharp Science: Celebrating Ada Lovelace: the 'world's first programmer'|work=New Scientist|date=24 March 2009|accessdateaccess-date=14 April 2012}}</ref><ref name="newyorker'13">[http://www.newyorker.com/online/blogs/books/2013/08/tom-stoppards-arcadia-at-twenty.html Tom Stoppard's “Arcadia,” at Twenty.] By Brad Leithauser. [[The New Yorker]], August 8, 2013.</ref> The engine was never completed, however, so her code was never tested.<ref name="KimToole1999">{{cite journal|title=Ada and the first computer|last1=Kim|first1=Eugene Eric|last2=Toole|first2=Betty Alexandra|journal=Scientific American|date=May 1999|volume=280|issue=5|pages=70–71|doi=10.1038/scientificamerican0599-76|bibcode=1999SciAm.280e..76E}}</ref>
*[[Adams-Bashforth]] method published.<ref>Bashforth, Francis (1883), An Attempt to test the Theories of Capillary Action by comparing the theoretical and measured forms of drops of fluid. With an explanation of the method of integration employed in constructing the tables which give the theoretical forms of such drops, by J. C. Adams, Cambridge.</ref>
* In applied mathematics, Jacobi develops [[Jacobi method|technique for solving numerical equations]].<ref>[http://canum2006.univ-rennes1.fr/exposes_et_posters/vandervorst.pdf Jacobi's Ideas on Eigenvalue Computation in a modern context], Henk van der Vorst.</ref><ref>[http://www.encyclopediaofmath.org/index.php/Jacobi_method Jacobi method], [[Encyclopedia of Mathematics]].</ref><ref>[http://www.siam.org/meetings/la09/talks/benzi.pdf The Early History of Matrix Iterations: With a Focus on the Italian Contribution], Michele Benzi, 26 October 2009. SIAM Conference on Applied Linear Algebra, Monterey Bay – Seaside, California.</ref>
* Gauss Seidel first published.
* To help with computing tides, [[Harmonic Analyser]] is built in 1886.
* 850 CE: Al-Kindi's frequency analysis – First systematic cryptanalysis technique for breaking substitution ciphers.<ref>{{Cite web |title=History of Algorithms |url=https://www.enjoyalgorithms.com/blog/history-of-algorithms/ |access-date=2025-07-12 |website=www.enjoyalgorithms.com}}</ref>
* 1206: Al-Jazari's programmable orchestra – Mechanical automata using pegged cylinders for sequence control (early program storage).<ref name=":1">{{Citation |title=Timeline of artificial intelligence |date=2025-07-12 |work=Wikipedia |url=https://en.wikipedia.org/w/index.php?title=Timeline_of_artificial_intelligence&oldid=1300048042 |access-date=2025-07-12 |language=en}}</ref>
* 1676: Leibniz's chain rule – Foundation for calculus-based optimization later used in backpropagation.<ref name=":1" />
* 1738/1763: Bernoulli's utility theory & Bayes' theorem – Probabilistic frameworks for decision-making algorithms.<ref name=":1" />
 
===1900s (decade)===
* MW1900 Kutta and CT[[Carl Runge|Runge]]'s work followed by [[Martin Kutta]] to invent the [[Runge–Kutta methods|Runge-Kutta method]] for approximating integration for differential equations.<ref>[[Martin Kutta|MW Kutta]] (1900). "Beiträge zur näherungsweisen Integration totaler Differentialgleichungen" [Contributions to the approximate integration of total differential equations] (in German). ''Thesis'', [[University of Munich]].
* 1901 – {{citation|title= Reprinted|journal=Z. Math. Phys. |volume=46 |year=1901|pages= 435–453}} and in [httphttps://books.google.co.ukcom/books/about/Beitrag_zur_n%C3%A4herungsweisen_Integration.html?id=K5e6kQEACAAJ&redir_esc=y B.G Teubner, 1901].</ref><ref>[[Carl Runge|Runge, C.]], "Über die numerische Auflösung von Differentialgleichungen" [About the numerical solution of differential equations](in German), Math. Ann. 46 (1895) 167-178.</ref>
 
===1910s (decade)===
* 1910 – A-M Cholesky creates a [[Cholesky decomposition method|matrix decomposition scheme]].<ref>{{cite journal|author1=Commandant Benoit|title=Note sur une méthode de résolution des équations normales provenant de l'application de la méthode des moindres carrés à un système d'équations linéaires en nombre inférieur à celui des inconnues (Procédé du Commandant Cholesky)|journal=Bulletin Géodésique |volume=2|date=1924|pages=67–77|doi=10.1007/BF03031308 }}</ref><ref>{{cite book|last1=Cholesky|author-link1=André-Louis Cholesky |title=Sur la résolution numérique des systèmes d'équations linéaires|date=1910}}</ref>
*[[Richardson extrapolation]] introduced.
 
===1920s===
* 1922 – [[Lewis Fry Richardson]] introduces [[numerical weather forecasting]] by manual calculation, using methods originally developed by [[Vilhelm Bjerknes]] as early as 1895.<ref>L F Richardson, Weather Prediction by Numerical Process. [[Cambridge University Press]] (1922).</ref><ref name="Lynch JCP">{{cite journal|last=Lynch|author-link=Peter Lynch (meteorologist)|first=Peter|title=The origins of computer weather prediction and climate modeling|journal=[[Journal of Computational Physics]]|date=March 2008|volume=227|issue=7|pages=3431–44|doi=10.1016/j.jcp.2007.02.034|bibcode=2008JCoPh.227.3431L|publisher=[[University of Miami]]|url=http://www.rsmas.miami.edu/personal/miskandarani/Courses/MPO662/Lynch,Peter/OriginsCompWF.JCP227.pdf|access-date=2010-12-23|url-status=dead|archive-url=https://web.archive.org/web/20100708191309/http://www.rsmas.miami.edu/personal/miskandarani/Courses/MPO662/Lynch,Peter/OriginsCompWF.JCP227.pdf|archive-date=2010-07-08}}</ref>
* Richardson introduces [[numerical weather forecasting#History|numerical weather forecasting]] by manual calculation.<ref>L F Richardson, Weather Prediction by Numerical Process. [[Cambridge University Press]] (1922).</ref>
* 1926 – [[Grete Hermann]] publishes foundational paper for [[computer algebra]], which established the existence of [[algorithms]] (including complexity bounds) for many of the basic problems of [[abstract algebra]], such as [[ideal (ring theory)|ideal]] membership for [[polynomial ring]]s.<ref>{{cite journal| author=Grete Hermann| title=Die Frage der endlich vielen Schritte in der Theorie der Polynomideale| journal=[[Mathematische Annalen]]| year=1926| volume=95| pages=736–788| url=http://gdz.sub.uni-goettingen.de/index.php?id=11&PPN=PPN235181684_0095&DMDID=DMDLOG_0044&L=1| doi=10.1007/bf01206635| s2cid=115897210| access-date=2017-05-05| archive-date=2016-10-09| archive-url=https://web.archive.org/web/20161009190144/http://gdz.sub.uni-goettingen.de/index.php?id=11&PPN=PPN235181684_0095&DMDID=DMDLOG_0044&L=1| url-status=dead| url-access=subscription}}</ref>
* Douglas Hartree creates the first [[Ab initio quantum chemistry methods|ab-initio]] method.
*1926 Adams-Moulton method.
* 1927 – [[Douglas Hartree]] creates what is later known as the [[Hartree–Fock method]], the first [[ab initio quantum chemistry methods]]. However, manual solutions of the Hartree–Fock equations for a medium-sized atom were laborious and small molecules required computational resources far beyond what was available before 1950.
* 1928 – [[Leslie Comrie]] proposes using commercial [[tabulating machine]]s to perform scientific calculations, and himself uses them to expand [[Ernest William Brown]]'s lunar calculations.
 
==1930s==
'''This decade marks the first major strides to a modern computer, and hence the start of the modern era.'''
* Fermi's Rome physics research group (informal name ''[[Via Panisperna boys|I ragazzi di Via Panisperna]]'') develop statistical algorithms based on [[Georges-Louis Leclerc, Comte de Buffon|Comte de Buffon's]] work, that would later become the foundation of the [[Monte Carlo method]]. See also [[FERMIAC]].
* Shannon explains how to use electric circuits to do Boolean algebra in "[[A Symbolic Analysis of Relay and Switching Circuits]]"
* [[John Vincent Atanasoff]] and [[Clifford Berry]] create the first electronic non-programmable, digital computing device, the [[Atanasoff–Berry Computer]], from 1937-42.
* [[Complex number calculator]] created by Stibitz.
* At [[Columbia University]]'s Rutherford Laboratory [[Wallace John Eckert|Wallace J. Eckert]] uses commercial tabulating machinery from [[IBM]], some of it specially modified, for scientific computation.
 
==1940s==
* 1947 – Metropolis algorithm for Monte Carlo simulation (votednamed one of the top -10 [[algorithm]]s of the 20th century)<ref name=":0">{{Cite journal |last1=Dongarra |first1=J. |last2=Sullivan |first2=F. |date=January 2000 |title=Guest Editors Introduction: the Top 10 Algorithms |journal=Computing in Science & Engineering |volume=2 |issue=1 |pages=22–23 |doi=10.1109/MCISE.2000.814652 |bibcode=2000CSE.....2a..22D |issn=1521-9615}}</ref> invented at Los Alamos by von Neumann, Ulam and Metropolis.<ref>{{cite journal|last=Metropolis|first=N.|title=The Beginning of the Monte Carlo method|journal=Los Alamos Science|year=1987|volume=No. 15, Page |page=125|url=http://library.lanl.gov/cgi-bin/getfile?15-12.pdf}}. Accessed 5 mayMay 2012.</ref><ref>S. Ulam, R. D. Richtmyer, and J. von Neumann(1947). [http://library.lanl.gov/cgi-bin/getfile?00329286.pdf Statistical methods in neutron diffusion]. Los Alamos Scientific Laboratory report LAMS–551.</ref><ref>{{cite journal | last1 = Metropolis | first1 = N. Metropolis| andlast2 = Ulam | first2 = S. Ulam| year = (1949). | title = The Monte Carlo method. | journal = Journal of the American Statistical Association | volume = 44:335-341 | issue = 247| pages = 335–341 | doi=10.1080/01621459.1949.10483310| pmid = 18139350 }}</ref>
* [[George Dantzig]] introduces the simplex method (votednamed one of the top 10 algorithms of the 20th century)<ref name=":0" /> in 1947.<ref>{{cite web|title=SIAM News, November 1994.|url=http://www.stanford.edu/group/SOL/dantzig.html|accessdateaccess-date=6 June 2012|archive-date=16 April 2009|archive-url=https://web.archive.org/web/20090416184457/http://www.stanford.edu/group/SOL/dantzig.html|url-status=dead}} Systems Optimization Laboratory, Stanford University Huang Engineering Center (site host/mirror).</ref>
* Ulam and von Neumann introduce the notion of cellular automata.<ref>Von Neumann, J., Theory of Self-ReproduiingReproducing Automata, Univ. of Illinois Press, Urbana, 1966.</ref>
* Turing formulated the LU decomposition method.<ref>A. M. Turing, Rounding-off errors in matrix processes. Quart. J Mech. Appl. Math. 1 (1948), 287–308 (according to Poole, David (2006), Linear Algebra: A Modern Introduction (2nd ed.), Canada: Thomson Brooks/Cole, {{ISBN |0-534-99845-3}}.) .</ref>
* Philips[[William createsPhillips (invents?economist)|A. W. H. Phillips]] invents the [[MONIAC|MONIAC hydraulic computer]] at LSE, better known as "Philip'sPhillips EconomicHydraulic Computer".<ref>[httphttps://www.theguardian.com/business/2008/may/08/bankofenglandgovernor.economics The computer model that once explained the British economy.] Larry Elliott, [[The Guardian]], Thursday 8 May 2008.</ref><ref>[http://www.sciencemuseum.org.uk/objects/computing_and_data_processing/1995-210.aspx Phillip's Economic Computer, 1949.] {{Webarchive|url=https://web.archive.org/web/20141003075541/http://www.sciencemuseum.org.uk/objects/computing_and_data_processing/1995-210.aspx |date=2014-10-03 }} Exhibit at [[London Science Museum]].</ref>
* First hydro simulations occurred at Los Alamos.<ref>Richtmyer, R. D. (1948). Proposed Numerical Method for Calculation of Shocks. Los Alamos, NM: Los Alamos Scientific Laboratory LA-671.</ref><ref>{{cite journal | last1 = Von Neumann | first1 = J. | last2 = Richtmyer | first2 = R. D. | year = 1950 | title = A Method for the Numerical Calculation of Hydrodynamic Shocks | journal = Journal of Applied Physics | volume = 21 | issue = 3| pages = 232–237 | doi=10.1063/1.1699639 | bibcode=1950JAP....21..232V}}</ref>
 
==1950s==
* [[History of numerical weather prediction|First successful weather predictions]] on a computer occurred.<ref>{{cite journal | last1 = Charney, | first1 = J.; | last2 = Fjørtoft, | first2 = R.; | last3 = von Neumann, | first3 = J. (November| year = 1950). "| title = Numerical Integration of the Barotropic Vorticity Equation" | doi = 10.1111/j.2153-3490.1950.tb00336.x | journal = Tellus | volume = 2 (| issue = 4) | pages=237–254| bibcode = 1950Tell....2..237C | doi-access = free }}</ref><ref>See the review article:- {{cite journal|last=Smagorinsky|first=J|title=The Beginnings of Numerical Weather Prediction and General Circulation Modelling: Early Recollections|journal=Advances in Geophysics|year=1983|volume=25|pages=3–37|url=http://docs.lib.noaa.gov/rescue/JNWP/50th_Symp_2004_CD.PDF/JNWPU_2004_All/1010.pdf|accessdateaccess-date=6 June 2012|doi=10.1016/S0065-2687(08)60170-3|bibcode=1983AdGeo..25....3S|isbn=9780120188253}}</ref>
* [[Magnus Hestenes|Hestenes]], [[Eduard Stiefel|Stiefel]], and [[Cornelius Lanczos|Lanczos]], all from the Institute for Numerical Analysis at the [[NIST|National Bureau of Standards]], initiate the development of [[Iterative method|Krylov subspace iteration method]]s.<ref>Magnus R. Hestenes and Eduard Stiefel, Methods of Conjugate Gradients for Solving Linear Systems, J. Res. Natl. Bur. Stand. 49, 409-436 (1952).</ref><ref>Eduard Stiefel, U¨ ber einige Methoden der Relaxationsrechnung (in German), Z. Angew. Math. Phys. 3, 1-33 (1952).</ref><ref>Cornelius Lanczos, Solution of Systems of Linear Equations by Minimized Iterations, J. Res. Natl. Bur. Stand. 49, 33-53 (1952).</ref><ref>Cornelius Lanczos, An Iteration Method for the Solution of the Eigenvalue Problem of Linear Differential and Integral Operators, J. Res. Natl. Bur. Stand. 45, 255-282 (1950).</ref> VotedNamed one of the top 10 algorithms of the 20th century.<ref name=":0" />
* [[Equations of State Calculations by Fast Computing Machines]] introduces the [[Metropolis–Hastings algorithm]].<ref>{{cite journal | last1 = Metropolis, | first1 = N.; | last2 = Rosenbluth, | first2 = A.W.; | last3 = Rosenbluth, | first3 = M.N.; | last4 = Teller, | first4 = A.H.; | last5 = Teller, | first5 = E. (| year = 1953): [| title = Equations of State Calculations by Fast Computing Machines | url = http://www.aliquote.org/pub/metropolis-et-al-1953.pdf Equations| ofjournal State= CalculationsJournal byof FastChemical ComputingPhysics Machines]| (Retrievedvolume 3= May21 2012).| Journalissue of= Chemical6| Physicspages 21 (6):= 1087–1092. Bibcode| 1953JChPh..21.1087M. [[doi: = 10.1063/1.1699114]] | bibcode=1953JChPh..21.1087M| osti = 4390578 | s2cid = 1046577 }}</ref>
* [[Molecular dynamics]] invented by Bernie Alder and Wainwright <ref>{{cite journal | last1 = Alder | first1 = B. J. Alder| andlast2 = Wainwright | first2 = T. E. Wainwright| year = (1957). "| title = Phase Transition for a Hard Sphere System". | journal = J. Chem. Phys. | volume = 27 (| issue = 5):| page = 1208. [[| doi: = 10.1063/1.1743957]] | bibcode = 1957JChPh..27.1208A | s2cid = 10791650 }}</ref><ref>{{cite journal | last1 = Alder | first1 = B. J. Alder| andlast2 = Wainwright | first2 = T. E. Wainwright| year = (1962). "| title = Phase Transition in Elastic Disks". | journal = Phys. Rev. | volume = 127 (| issue = 2):| pages = 359–361. [[| doi: = 10.1103/PhysRev.127.359]] | bibcode = 1962PhRv..127..359A | osti = 4798469 }}</ref>
*[[Alston Scott Householder|A S Householder]] invents his [[Householder matrix|eponymous matrices]] and [[Householder transformation|transformation method]] (voted one of the top 10 algorithms of the 20th century).<ref>{{cite journal|first=A. S. |last=Householder |title=Unitary Triangularization of a Nonsymmetric Matrix|journal=[[Journal of the ACM]]
|volume=5 |issue=4 |year=1958 |pages=339&ndash;342|doi=10.1145/320941.320947 |mr=0111128|s2cid=9858625 |url=https://hal.archives-ouvertes.fr/hal-01316095/file/p339householderb.pdf }}</ref>
* 1953 – [[Enrico Fermi]], [[John Pasta]], [[Stanislaw Ulam]], and [[Mary Tsingou]] discover the [[Fermi–Pasta–Ulam–Tsingou problem]] through computer simulations of a vibrating string.<ref>Fermi, E. (posthumously); Pasta, J.; Ulam, S. (1955) : [http://www.osti.gov/accomplishments/documents/fullText/ACC0041.pdf Studies of Nonlinear Problems (accessed 25 Sep 2012)]. Los Alamos Laboratory Document LA-1940. [http://www.cs.princeton.edu/courses/archive/fall09/cos323/papers/fpu55.pdf Also appeared] in 'Collected Works of Enrico Fermi', E. Segre ed., [[University of Chicago Press]], Vol.II,978–988,1965. Recovered 21 Dec 2012</ref>
* [[John G.F. Francis]]<ref>J.G.F. Francis, "The QR Transformation, I", The Computer Journal, 4(3), pages 265–271 (1961, received October 1959) online at oxfordjournals.org;J.G.F. Francis, "The QR Transformation, II" The Computer Journal, 4(4), pages 332–345 (1962) online at oxfordjournals.org.</ref> and [[Vera Kublanovskaya]]<ref>Vera N. Kublanovskaya (1961), "On some algorithms for the solution of the complete eigenvalue problem," USSR Computational Mathematics and Mathematical Physics, 1(3), pages 637–657 (1963, received Feb 1961). Also published in: Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki [Journal of Computational Mathematics and Mathematical Physics], 1(4), pages 555–570 (1961).</ref> invent [[QR factorization]] (voted one of the top 10 algorithms of the 20th century).
* A team led by [[John Backus]] develops the FORTRAN compiler and programming language at [[IBM]]'s research centre in [[San Jose, California]]. This sped the adoption of scientific programming,<ref>W.W. McDowell Award citation: {{cite web| title=W. Wallace McDowell Award| url=http://www.computer.org/portal/site/ieeecs/menuitem.c5efb9b8ade9096b8a9ca0108bcd45f3/index.jsp?&pName=ieeecs_level1&path=ieeecs/about/awards&file=WallaceMcD_recipients.xml&xsl=generic.xsl&| access-date=April 15, 2008| archive-date=September 29, 2007| archive-url=https://web.archive.org/web/20070929133553/http://www.computer.org/portal/site/ieeecs/menuitem.c5efb9b8ade9096b8a9ca0108bcd45f3/index.jsp?&pName=ieeecs_level1&path=ieeecs%2Fabout%2Fawards&file=WallaceMcD_recipients.xml&xsl=generic.xsl&| url-status=dead}}</ref><ref name="National Science Foundation">National Medal of Science citation: {{cite web | title = The President's National Medal of Science: John Backus | publisher = National Science Foundation | url = https://www.nsf.gov/od/nms/recip_details.cfm?recip_id=25 | access-date =March 21, 2007}}</ref><ref>{{cite web|title=ACM Turing Award Citation: John Backus |publisher=[[Association for Computing Machinery]] |url=http://www.acm.org/awards/turing_citations/backus.html |access-date=March 22, 2007 |archive-url=https://web.archive.org/web/20070204114319/http://www.acm.org/awards/turing_citations/backus.html |archive-date=February 4, 2007 |url-status=dead }}</ref> and is one of the [[Timeline of programming languages|oldest extant programming languages]], as well as one of the most popular in science and engineering.
 
==1960s==
* [[finite1960 element method#History|First recorded use]] of the term "[[finite element method]]" by [[Ray W. Clough|Ray Clough]] to describe the earlier methods of [[Richard Courant]], [[Alexander Hrennikoff]] and [[Olgierd Zienkiewicz]] in [[structural analysis]].<ref>RW Clough, “The"The Finite Element Method in Plane
Stress Analysis," Proceedings of 2nd ASCE Conference on Electronic Computation, Pittsburgh, PA, Sept. 8, 9, 1960.</ref> to describe the methods of Courant, Hrenikoff and Zienkiewicz, among others. See also [[Structural analysis#Timeline|here]].
* 1961 – [[John G.F. Francis]]<ref>{{cite journal | last1 = Francis | first1 = J.G.F. Francis,| year = 1961 | title = "The QR Transformation, I", | journal = The Computer Journal, | volume = 4( | issue = 3),| pages = 265–271 (1961,| receiveddoi=10.1093/comjnl/4.3.265| Octoberdoi-access 1959)= onlinefree at}}</ref><ref>{{cite journal | last1 = Francis | first1 = oxfordjournals.org;J.G.F. Francis,| year = 1962 | title = "The QR Transformation, II" | journal = The Computer Journal, | volume = 4( | issue = 4),| pages = 332–345 (1962)| online at oxfordjournalsdoi=10.org1093/comjnl/4.4.332| doi-access = free }}</ref> and [[Vera Kublanovskaya]]<ref>{{cite journal | last1 = Kublanovskaya | first1 = Vera N. Kublanovskaya| year = (1961), "| title = On some algorithms for the solution of the complete eigenvalue problem," | journal = USSR Computational Mathematics and Mathematical Physics, | volume = 1( | issue = 3),| pages = 637–657 (1963,| receiveddoi Feb= 1961)10.1016/0041-5553(63)90168-X }} Also published in: Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki [Journal of Computational Mathematics and Mathematical Physics], 1(4), pages 555–570 (1961).</ref> invent [[QR factorization]] (voted one of the top 10 algorithms of the 20th century).
* 1963 – [[Edward Lorenz]] discovers the [[butterfly effect]] on a computer, attracting interest in [[chaos theory]].<ref>{{cite journal|last=Lorenz|first=Edward N.|title=Deterministic Nonperiodic Flow|journal=Journal of the Atmospheric Sciences |volume=20 |issue=2 |pages=130–141|year=1963|url=http://www.nd.edu/~powers/ame.60611/lorenz.article.pdf |doi=10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2 |bibcode=1963JAtS...20..130L}}</ref>
* Molecular dynamics invented independently by [[Aneesur Rahman]].<ref>{{cite journal|last=Rahman|first=A|title=Correlations in the Motion of Atoms in Liquid Argon|journal=Phys Rev|year=1964|volume=136|issue=2A|pages=A405–A41|doi=10.1103/PhysRev.136.A405}}</ref>
* 1961 – Using computational investigations of the [[3-body problem]], [[Michael Minovitch]] formulates the [[gravity assist]] method.<ref>Minovitch, Michael: "A method for determining interplanetary free-fall reconnaissance trajectories," Jet Propulsion Laboratory Technical Memo TM-312-130, pages 38-44 (23 August 1961).</ref><ref>Christopher Riley and Dallas Campbell, Oct 22, 2012. [http://www.bbc.co.uk%2Fnews%2Fscience-environment-20033940&ei=j-29UZ6sNIexPInBgfAG&usg=AFQjCNEj30660hWJWTpfDJohrZek5KxAFA "The maths that made Voyager possible"]. BBC News Science and Environment. Recovered 16 Jun 2013.</ref>
* Fast Fourier Transform (voted one of the top 10 [[algorithms]] of the 20th century) invented by Cooley and Tukey.<ref>Cooley, James W., and John W. Tukey, "An algorithm for the machine calculation of complex Fourier series," Math. Comput. 19, 297–301 (1965).</ref>
* 1964 – Molecular dynamics invented independently by [[Aneesur Rahman]].<ref>{{cite journal|last=Rahman|first=A|title=Correlations in the Motion of Atoms in Liquid Argon|journal=Phys Rev|year=1964|volume=136|issue=2A|pages=A405–A41|doi=10.1103/PhysRev.136.A405|bibcode=1964PhRv..136..405R}}</ref>
* 1965 – [[fast Fourier transform]] developed by [[James W. Cooley]] and [[John W. Tukey]].<ref>{{cite journal | last1 = Cooley | first1 = James W. | last2 = Tukey | first2 = John W. | year = 1965 | title = An algorithm for the machine calculation of complex Fourier series | url = http://attach3.bdwm.net/attach/0Announce/groups/GROUP_3/MathTools/D6714701A/D69595345/M.1089260001.A/CooleyJ_AlgMCC.pdf | journal = Math. Comput. | volume = 19 | issue = 90 | pages = 297–301 | doi = 10.1090/s0025-5718-1965-0178586-1 | doi-access = free }}{{Dead link|date=October 2023 |bot=InternetArchiveBot |fix-attempted=yes }}</ref>
* 1964 – [[Walter Kohn]], with [[Lu Jeu Sham]] and [[Pierre Hohenberg]], instigates the development of [[density functional theory]],<ref>
{{cite journal
| last1 = Kohn | first1 = Walter
| last2 = Hohenberg | first2 = Pierre
| year = 1964| title = Inhomogeneous Electron Gas| journal = [[Physical Review]]| volume = 136 | pages = B864–B871| issue = 3B | doi = 10.1103/PhysRev.136.B864|bibcode = 1964PhRv..136..864H | doi-access = free}}</ref><ref>
{{cite journal
| last1 = Kohn | first1 = Walter
| last2 = Sham | first2 = Lu Jeu
| year = 1965
| title = Self-Consistent Equations Including Exchange and Correlation Effects
| journal = [[Physical Review]]
| volume = 140 | pages = A1133–A1138 | issue = 4A
| doi = 10.1103/PHYSREV.140.A1133
|bibcode = 1965PhRv..140.1133K | doi-access = free}}</ref> for which he shares the 1998 Nobel Chemistry Prize with [[John Pople]].<ref>{{cite web | title = The Nobel Prize in Chemistry 1998 | publisher = Nobelprize.org | url = http://nobelprize.org/nobel_prizes/chemistry/laureates/1998/index.html|access-date=2008-10-06}}</ref> This contribution is arguably the earliest work to which Nobels were given for a computer program or computational technique.
* First regression calculations in economics.
 
==1970s==
* 1975 – [[Benoit Mandelbrot,]] fromcoins studiesthe ofterm "[[fractal]]" to describe the [[self-similarity]] found in the [[Fatou set|Fatou]], [[Julia set|Julia]] and [[Mandelbrot set]]s,. coinedFractals and popularizedbecome the termfirst 'fractal'[[mathematical tovisualization]] describetool theseextensively structures'explored [[self-similarity]]with computing.<ref>B. Mandelbrot; ''Les objets fractals, forme, hasard et dimension '' (in French). Publisher: Flammarion (1975), {{ISBN ISBN |9782082106474 }}; English translation ''Fractals: Form, Chance and Dimension.'' Publisher: Freeman, W. H & Company. (1977). {{ISBN |9780716704737.</ref><ref>Mandelbrot, Benoît B.; (1983). The Fractal Geometry of Nature. San Francisco: W.H. Freeman. ISBN 0-7167-1186-9}}.</ref>
* 1977 – [[Kenneth Appel]] and [[Wolfgang Haken]] prove the [[four colour theorem]], the [[Computer-assisted proof#List of theorems proved with the help of computer programs|first theorem to be proved by computer]].<ref>Kenneth{{cite journal | last1 = Appel and| Wolfgangfirst1 = Kenneth | last2 = Haken, "| first2 = Wolfgang | year = 1977 | title = Every planar map is four colorable, Part I: Discharging," | journal = Illinois Journal of Mathematics | volume = 21: | issue = 3| pages = 429–490, 1977| doi = 10.1215/ijm/1256049011 | doi-access = free }}</ref><ref>{{cite journal | last1 = Appel, | first1 = K. and| last2 = Haken, | first2 = W. "| year = 1977 | title = Every Planar Map is Four-Colorable, II: Reducibility." | journal = Illinois J. Math. | volume = 21, 491| pages = 491–567 | doi = 10.1215/ijm/1256049012 | doi-567,access = free }}</ref><ref>{{cite journal | last1 = Appel | first1 = K. | last2 = Haken | first2 = W. | year = 1977 | title = The Solution of the Four-Color Map Problem | journal = Sci. Am. | volume = 237 | issue = 4| pages = 108–121 | doi=10.1038/scientificamerican1077-108 | bibcode = 1977SciAm.237d.108A}}</ref>
</ref><ref>Appel, K. and Haken, W. "The Solution of the Four-Color Map Problem." Sci. Amer. 237, 108-121, 1977.</ref>
 
==1980s==
* [[Fast multipole method]] (voted one of the top 10 [[algorithms]] of the 20th century) invented by [[Vladimir Rokhlin, Jr.|Vladimir Rokhlin]] and [[Leslie Greengard]].<ref>L. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems, MIT, Cambridge, (1987).</ref><ref>Rokhlin, Vladimir (1985). "Rapid Solution of Integral Equations of Classic Potential Theory." J. Computational Physics Vol. 60, pp. 187-207.</ref><ref>{{cite journal | last1 = Greengard | first1 = L. Greengard| andlast2 = Rokhlin | first2 = V. Rokhlin,| year = 1987 | title = "A fast algorithm for particle simulations," | journal = J. Comput. Phys., | volume = 73 (1987),| no.issue = 2,| pp.pages = 325–348 | doi=10.1016/0021-9991(87)90140-9| bibcode = 1987JCoPh..73..325G }}</ref>
* [[Car–Parrinello molecular dynamics]] developed by [[Roberto Car]] and [[Michele Parrinello]]
 
==1990s==
* 1990 – In computational genomics and [[sequence analysis]], the [[Human Genome Project]], an endeavour to sequence the entire [[human genome]], begins in 1990.
* 1998 – [[Kepler conjecture]] is [[proof by exhaustion|almost all but certainly proved]] algorithmically by [[Thomas Callister Hales|Thomas Hales]] in 1998.
* The appearance of the first research grids using [[volunteer computing]] – [[GIMPS]] (1996), [[distributed.net]] (1997) and [[Seti@Home]] (1999).
 
==2000s==
* 2000 – The [[Human Genome Project]] completes a rough draft of [[human genome]] in 2000.
* 2003 – The [[Human Genome Project]] completed in 2003.
* 2002 – The [[BOINC]] architecture is launched.
 
==2010s==
*[[Foldit]] players solve virus structure, one of the first cases of a [[Gamification|game solving a scientific question]].
 
----
 
{{Further|Timeline of computing 2020–2029|List of years in science#2020s}}
== Miscellaneous ==
* Technology and Society
** [[Tim Berners-Lee]] created [[Hypertext Transfer Protocol]] (HTTP) and the [[World Wide Web]] in 1989 and 1990 respectively, while working at [[CERN]].
** The world's first [[graphical user interface|graphical]] internet browser, [[Mosaic (web browser)|Mosaic]] released at the [[National Center for Supercomputing Applications]] (NCSA) at the [[University of Illinois Urbana-Champaign]], in 1993.<ref>[http://www.ncsa.illinois.edu/Projects/mosaic.htmlAbout NCSA Mosaic]. National Center for Supercomputing Applications homepage. Retrieved 11 Nov 2012.</ref>
 
==See also==
* [[ScientificComputational computingscience]]
* [[History of computing]]
* [[Timeline of computing]]
* [[History of mathematics]]
* [[Timeline of mathematics]]
* [[Timeline of algorithms]]
* [[Timeline of computational physics]]
* [[Timeline of computational mathematics]]
* [[Timeline of modernnumerical scientificanalysis computingafter 1945]]
* [[History of computing hardware]]
* [[Timeline of modern scientific computing]]
 
==References==
{{reflistReflist|colwidth=30em}}
 
==External links==
* SIAM (Society for Industrial and Applied Mathematics) News. [http://www.siam.org/news/news.php?id=637 Top 10 Algorithms of the 20th Century].
* [https://web.archive.org/web/20130125035840/http://history.siam.org/ The History of Numerical Analysis and Scientific Computing @ SIAM (Society for Industrial and Applied Mathematics)]
* Jacqueline{{cite journal | last1 = Ruttimann. [http://www.nature.com/nature/journal/v440/n7083/full/440399a.html| first1 = Jacqueline | year = 2006 | title = 2020 computing: Milestones in scientific computing (HTML| document)]journal and= [http://www.nature.com/nature/journal/v440/n7083/pdf/440399a.pdfNature (PDF| link)].volume Nature= 440, 399-405| (23issue March= 2006),7083| pages = 399–405 | [[doi: = 10.1038/440399a]]. [[Nature| (journal)pmid=16554772|Nature]] bibcode = 2006Natur.com440..399R news| feature;s2cid recovered= 2021967804 Oct| 2012.doi-access = free }}
* {{cite journal | last1 = Anderson, | first1 = H. L. [http://adsabs.harvard.edu/abs/1986JSP....43..731A| year = 1986| title = Scientific Uses of the MANIAC] and| journal [http://dasher.wustl.edu/chem478/reading/jstatphys-43-731-86.pdf alternate link](recovered 20 Oct 2012).= Journal of Statistical Physics, Volume| volume = 43, Issue| 5-6,issue = 5–6| pages = pp.&nbsp;731–748. [[| doi: = 10.1007/BF02628301]] | bibcode=1986JSP....43..731A| s2cid = 122676398 | url = https://zenodo.org/record/1232554 }}
*IEEE Milestones
 
* [[Timeline{{Timelines of computing]]}}
{{subjectSubject bar|portal1=Science|portal2=Computing|portal3=Mathematics}}
 
[[Category:Computational science]]
[[Category:Science timelines|sComputing]]
[[Category:Computing timelines|s]]