Content deleted Content added
Cup o' Java (talk | contribs) m →Miscelleaneous: Spelling/grammar correction |
→1920s: Wikilink Tabulating machine |
||
(145 intermediate revisions by 51 users not shown) | |||
Line 1:
{{short description|Computational science history}}
{{Multiple issues|
{{more citations needed|date=May 2017}}
{{too few opinions|date=May 2017}}
}}
The following is a '''timeline of scientific computing''', also known as '''computational science'''.
Line 4 ⟶ 11:
===18th century===
* Simpson rediscovers [[Simpson's rule|Simpson's '''rule''']], a century after [[Johannes Kepler]] (who derived it in 1615 after seeing it used for wine barrels).
* 1733 – The French naturalist Comte de Buffon poses [[Buffon's needle problem|his needle problem]]
* Euler comes up with [[Euler integration|a simple numerical method]] for integrands.<ref>[[Leonhard Euler|Euler, L]]. ''[[Institutionum calculi integralis]]''. Impensis Academiae Imperialis Scientiarum, 1768.</ref><ref>Butcher, John C. (2003), Numerical Methods for Ordinary Differential Equations, New York: John Wiley & Sons, {{ISBN|978-0-471-96758-3}}.</ref><ref>Hairer, Ernst; Nørsett, Syvert Paul; Wanner, Gerhard (1993), Solving ordinary differential equations I: Nonstiff problems, Berlin, New York: Springer-Verlag, {{ISBN|978-3-540-56670-0}}.</ref>
* c. 500 BCE - Urdhva Tiryakbhyam algorithm, a Vedic method for fast integer multiplication; foundational for Indian mathematics.<ref>{{Cite book |url=https://doi.org/10.54094/b-b5e8c492cc |title=The Rig-Vedic and Post-Rig-Vedic Polity (1500 BCE-500 BCE) [PDF, E-Book] |date=2020 |publisher=Vernon Press |doi=10.54094/b-b5e8c492cc |isbn=978-1-64889-001-7}}</ref>
* 300 BCE - Babylonian root extraction method, Earliest documented numerical algorithm for square roots.<ref>{{Citation |title=Timeline of algorithms |date=2025-05-13 |work=Wikipedia |url=https://en.wikipedia.org/w/index.php?title=Timeline_of_algorithms&oldid=1290132197 |access-date=2025-07-12 |language=en}}</ref>
* c. 250 BCE - Chinese Remainder Theorem Systematic solution to simultaneous congruences; used in cryptography.<ref>{{Cite web |title=History of Algorithms |url=https://www.enjoyalgorithms.com/blog/history-of-algorithms/ |access-date=2025-07-12 |website=www.enjoyalgorithms.com}}</ref>
===19th century===
* First formulation of [[Gram–Schmidt process|Gram-Schmidt orthogonalisation]] by Laplace,<ref>Laplace, PS. (1816). Théorie Analytique des Probabilités :First Supplement, p. 497ff.</ref> to be further improved decades later.<ref>{{cite journal | last1 = Gram | first1 = J. P. | year = 1883 | title = Ueber die Entwickelung reeler Funtionen in Reihen mittelst der Methode der kleinsten Quadrate | journal = JRNL. Für die reine und angewandte Math. | volume = 94 | pages = 71–73 }}</ref><ref>{{cite journal | last1 = Schmidt | first1 = E. | title = Zur Theorie der linearen und nichtlinearen Integralgleichungen. I. Teil: Entwicklung willkürlicher Funktionen nach Systemen vorgeschriebener | journal = Math. Ann. | volume = 63 | page = 1907 }}</ref><ref>[http://jeff560.tripod.com/g.html#GRAM-SCHMIDT%20ORTHOGONALIZATION Earliest Known Uses of Some of the Words of Mathematics (G).] As of Aug 2017.</ref><ref>{{cite book|last1=Farebrother|first1=RW|title=Linear Least Squares Computations|date=1988|publisher=CRC Press|isbn=9780824776619|url=https://books.google.com/books?id=aCS0zw7SztEC|access-date=19 August 2017}}</ref>
* Babbage in 1822, began work on a machine made to compute/calculate values of polynomial functions automatically by using the method of finite differences. This
* Lovelace's note G on the [[Analytical Engine]] (1842) describes an algorithm for generating [[Bernoulli numbers]]. It is considered the first algorithm ever specifically tailored for implementation on a computer, and thus the first-ever computer programme.<ref>{{cite web|last=Simonite|first=Tom|url=
*[[Adams-Bashforth]] method published.<ref>Bashforth, Francis (1883), An Attempt to test the Theories of Capillary Action by comparing the theoretical and measured forms of drops of fluid. With an explanation of the method of integration employed in constructing the tables which give the theoretical forms of such drops, by J. C. Adams, Cambridge.</ref>
* In applied mathematics, Jacobi develops [[Jacobi method|technique for solving numerical equations]].<ref>[http://canum2006.univ-rennes1.fr/exposes_et_posters/vandervorst.pdf Jacobi's Ideas on Eigenvalue Computation in a modern context], Henk van der Vorst.</ref><ref>[http://www.encyclopediaofmath.org/index.php/Jacobi_method Jacobi method], [[Encyclopedia of Mathematics]].</ref><ref>[http://www.siam.org/meetings/la09/talks/benzi.pdf The Early History of Matrix Iterations: With a Focus on the Italian Contribution], Michele Benzi, 26 October 2009. SIAM Conference on Applied Linear Algebra, Monterey Bay – Seaside, California.</ref>
* Gauss Seidel first published.
* To help with computing tides, [[Harmonic Analyser]] is built in 1886.
* 850 CE: Al-Kindi's frequency analysis – First systematic cryptanalysis technique for breaking substitution ciphers.<ref>{{Cite web |title=History of Algorithms |url=https://www.enjoyalgorithms.com/blog/history-of-algorithms/ |access-date=2025-07-12 |website=www.enjoyalgorithms.com}}</ref>
* 1206: Al-Jazari's programmable orchestra – Mechanical automata using pegged cylinders for sequence control (early program storage).<ref name=":1">{{Citation |title=Timeline of artificial intelligence |date=2025-07-12 |work=Wikipedia |url=https://en.wikipedia.org/w/index.php?title=Timeline_of_artificial_intelligence&oldid=1300048042 |access-date=2025-07-12 |language=en}}</ref>
* 1676: Leibniz's chain rule – Foundation for calculus-based optimization later used in backpropagation.<ref name=":1" />
* 1738/1763: Bernoulli's utility theory & Bayes' theorem – Probabilistic frameworks for decision-making algorithms.<ref name=":1" />
===1900s (decade)===
*
* 1901 – {{citation|title= Reprinted|journal=Z. Math. Phys. |volume=46 |year=1901|pages= 435–453}} and in [
===1910s (decade)===
* 1910 – A-M Cholesky creates a [[Cholesky decomposition method|matrix decomposition scheme]].<ref>{{cite journal|author1=Commandant Benoit|title=Note sur une méthode de résolution des équations normales provenant de l'application de la méthode des moindres carrés à un système d'équations linéaires en nombre inférieur à celui des inconnues (Procédé du Commandant Cholesky)|journal=Bulletin Géodésique |volume=2|date=1924|pages=67–77|doi=10.1007/BF03031308 }}</ref><ref>{{cite book|last1=Cholesky|author-link1=André-Louis Cholesky |title=Sur la résolution numérique des systèmes d'équations linéaires|date=1910}}</ref>
*[[Richardson extrapolation]] introduced.
===1920s===
* 1922 – [[Lewis Fry Richardson]] introduces [[numerical weather forecasting]] by manual calculation, using methods originally developed by [[Vilhelm Bjerknes]] as early as 1895.<ref>L F Richardson, Weather Prediction by Numerical Process. [[Cambridge University Press]] (1922).</ref><ref name="Lynch JCP">{{cite journal|last=Lynch|author-link=Peter Lynch (meteorologist)|first=Peter|title=The origins of computer weather prediction and climate modeling|journal=[[Journal of Computational Physics]]|date=March 2008|volume=227|issue=7|pages=3431–44|doi=10.1016/j.jcp.2007.02.034|bibcode=2008JCoPh.227.3431L|publisher=[[University of Miami]]|url=http://www.rsmas.miami.edu/personal/miskandarani/Courses/MPO662/Lynch,Peter/OriginsCompWF.JCP227.pdf|access-date=2010-12-23|url-status=dead|archive-url=https://web.archive.org/web/20100708191309/http://www.rsmas.miami.edu/personal/miskandarani/Courses/MPO662/Lynch,Peter/OriginsCompWF.JCP227.pdf|archive-date=2010-07-08}}</ref>
* 1926 – [[Grete Hermann]] publishes foundational paper for [[computer algebra]], which established the existence of [[algorithms]] (including complexity bounds) for many of the basic problems of [[abstract algebra]], such as [[ideal (ring theory)|ideal]] membership for [[polynomial ring]]s.<ref>{{cite journal| author=Grete Hermann| title=Die Frage der endlich vielen Schritte in der Theorie der Polynomideale| journal=[[Mathematische Annalen]]| year=1926| volume=95| pages=736–788| url=http://gdz.sub.uni-goettingen.de/index.php?id=11&PPN=PPN235181684_0095&DMDID=DMDLOG_0044&L=1| doi=10.1007/bf01206635| s2cid=115897210| access-date=2017-05-05| archive-date=2016-10-09| archive-url=https://web.archive.org/web/20161009190144/http://gdz.sub.uni-goettingen.de/index.php?id=11&PPN=PPN235181684_0095&DMDID=DMDLOG_0044&L=1| url-status=dead| url-access=subscription}}</ref>
*1926 Adams-Moulton method.
* 1927 – [[Douglas Hartree]] creates what is later known as the [[Hartree–Fock method]], the first [[ab initio quantum chemistry methods]]. However, manual solutions of the Hartree–Fock equations for a medium-sized atom were laborious and small molecules required computational resources far beyond what was available before 1950.
* 1928 – [[Leslie Comrie]] proposes using commercial [[tabulating machine]]s to perform scientific calculations, and himself uses them to expand [[Ernest William Brown]]'s lunar calculations.
==1930s==
'''This decade marks the first major strides to a modern computer, and hence the start of the modern era.'''
* Fermi's Rome physics research group (informal name ''[[Via Panisperna boys|I ragazzi di Via Panisperna]]'') develop statistical algorithms based on [[Georges-Louis Leclerc, Comte de Buffon|Comte de Buffon's]] work, that would later become the foundation of the [[Monte Carlo method]]. See also [[FERMIAC]].
* Shannon explains how to use electric circuits to do Boolean algebra in "[[A Symbolic Analysis of Relay and Switching Circuits]]"
* [[John Vincent Atanasoff]] and [[Clifford Berry]] create the first electronic non-programmable, digital computing device, the [[Atanasoff–Berry Computer]], from 1937-42.
* [[Complex number calculator]] created by Stibitz.
* At [[Columbia University]]'s Rutherford Laboratory [[Wallace John Eckert|Wallace J. Eckert]] uses commercial tabulating machinery from [[IBM]], some of it specially modified, for scientific computation.
==1940s==
* 1947 – Metropolis algorithm for Monte Carlo simulation (
* [[George Dantzig]] introduces the simplex method (
* Ulam and von Neumann introduce the notion of cellular automata.<ref>Von Neumann, J., Theory of Self-
* Turing formulated the LU decomposition method.<ref>A. M. Turing, Rounding-off errors in matrix processes. Quart. J Mech. Appl. Math. 1 (1948), 287–308 (according to Poole, David (2006), Linear Algebra: A Modern Introduction (2nd ed.), Canada: Thomson Brooks/Cole, {{ISBN
*
* First hydro simulations occurred at Los Alamos.<ref>Richtmyer, R. D. (1948). Proposed Numerical Method for Calculation of Shocks. Los Alamos, NM: Los Alamos Scientific Laboratory LA-671.</ref><ref>{{cite journal | last1 = Von Neumann | first1 = J. | last2 = Richtmyer | first2 = R. D. | year = 1950 | title = A Method for the Numerical Calculation of Hydrodynamic Shocks | journal = Journal of Applied Physics | volume = 21 | issue = 3| pages = 232–237 | doi=10.1063/1.1699639 | bibcode=1950JAP....21..232V}}</ref>
==1950s==
* [[History of numerical weather prediction|First successful weather predictions]] on a computer occurred.<ref>{{cite journal | last1 = Charney
* [[Magnus Hestenes|Hestenes]], [[Eduard Stiefel|Stiefel]], and [[Cornelius Lanczos|Lanczos]], all from the Institute for Numerical Analysis at the [[NIST|National Bureau of Standards]], initiate the development of [[Iterative method|Krylov subspace iteration method]]s.<ref>Magnus R. Hestenes and Eduard Stiefel, Methods of Conjugate Gradients for Solving Linear Systems, J. Res. Natl. Bur. Stand. 49, 409-436 (1952).</ref><ref>Eduard Stiefel, U¨ ber einige Methoden der Relaxationsrechnung (in German), Z. Angew. Math. Phys. 3, 1-33 (1952).</ref><ref>Cornelius Lanczos, Solution of Systems of Linear Equations by Minimized Iterations, J. Res. Natl. Bur. Stand. 49, 33-53 (1952).</ref><ref>Cornelius Lanczos, An Iteration Method for the Solution of the Eigenvalue Problem of Linear Differential and Integral Operators, J. Res. Natl. Bur. Stand. 45, 255-282 (1950).</ref>
* [[Equations of State Calculations by Fast Computing Machines]] introduces the [[Metropolis–Hastings algorithm]].<ref>{{cite journal | last1 = Metropolis
*
*[[Alston Scott Householder|A S Householder]] invents his [[Householder matrix|eponymous matrices]] and [[Householder transformation|transformation method]] (voted one of the top 10 algorithms of the 20th century).<ref>{{cite journal|first=A. S. |last=Householder |title=Unitary Triangularization of a Nonsymmetric Matrix|journal=[[Journal of the ACM]]
|volume=5 |issue=4 |year=1958 |pages=339–342|doi=10.1145/320941.320947 |mr=0111128|s2cid=9858625 |url=https://hal.archives-ouvertes.fr/hal-01316095/file/p339householderb.pdf }}</ref>
* 1953 – [[Enrico Fermi]], [[John Pasta]], [[Stanislaw Ulam]], and [[Mary Tsingou]] discover the [[Fermi–Pasta–Ulam–Tsingou problem]] through computer simulations of a vibrating string.<ref>Fermi, E. (posthumously); Pasta, J.; Ulam, S. (1955) : [http://www.osti.gov/accomplishments/documents/fullText/ACC0041.pdf Studies of Nonlinear Problems (accessed 25 Sep 2012)]. Los Alamos Laboratory Document LA-1940. [http://www.cs.princeton.edu/courses/archive/fall09/cos323/papers/fpu55.pdf Also appeared] in 'Collected Works of Enrico Fermi', E. Segre ed., [[University of Chicago Press]], Vol.II,978–988,1965. Recovered 21 Dec 2012</ref>
* [[John G.F. Francis]]<ref>J.G.F. Francis, "The QR Transformation, I", The Computer Journal, 4(3), pages 265–271 (1961, received October 1959) online at oxfordjournals.org;J.G.F. Francis, "The QR Transformation, II" The Computer Journal, 4(4), pages 332–345 (1962) online at oxfordjournals.org.</ref> and [[Vera Kublanovskaya]]<ref>Vera N. Kublanovskaya (1961), "On some algorithms for the solution of the complete eigenvalue problem," USSR Computational Mathematics and Mathematical Physics, 1(3), pages 637–657 (1963, received Feb 1961). Also published in: Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki [Journal of Computational Mathematics and Mathematical Physics], 1(4), pages 555–570 (1961).</ref> invent [[QR factorization]] (voted one of the top 10 algorithms of the 20th century).▼
* A team led by [[John Backus]] develops the FORTRAN compiler and programming language at [[IBM]]'s research centre in [[San Jose, California]]. This sped the adoption of scientific programming,<ref>W.W. McDowell Award citation: {{cite web| title=W. Wallace McDowell Award| url=http://www.computer.org/portal/site/ieeecs/menuitem.c5efb9b8ade9096b8a9ca0108bcd45f3/index.jsp?&pName=ieeecs_level1&path=ieeecs/about/awards&file=WallaceMcD_recipients.xml&xsl=generic.xsl&| access-date=April 15, 2008| archive-date=September 29, 2007| archive-url=https://web.archive.org/web/20070929133553/http://www.computer.org/portal/site/ieeecs/menuitem.c5efb9b8ade9096b8a9ca0108bcd45f3/index.jsp?&pName=ieeecs_level1&path=ieeecs%2Fabout%2Fawards&file=WallaceMcD_recipients.xml&xsl=generic.xsl&| url-status=dead}}</ref><ref name="National Science Foundation">National Medal of Science citation: {{cite web | title = The President's National Medal of Science: John Backus | publisher = National Science Foundation | url = https://www.nsf.gov/od/nms/recip_details.cfm?recip_id=25 | access-date =March 21, 2007}}</ref><ref>{{cite web|title=ACM Turing Award Citation: John Backus |publisher=[[Association for Computing Machinery]] |url=http://www.acm.org/awards/turing_citations/backus.html |access-date=March 22, 2007 |archive-url=https://web.archive.org/web/20070204114319/http://www.acm.org/awards/turing_citations/backus.html |archive-date=February 4, 2007 |url-status=dead }}</ref> and is one of the [[Timeline of programming languages|oldest extant programming languages]], as well as one of the most popular in science and engineering.
==1960s==
*
Stress Analysis,
▲* 1961 – [[John G.F. Francis]]<ref>{{cite journal | last1 = Francis | first1 = J.G.F.
* 1963 – [[Edward Lorenz]] discovers the [[butterfly effect]] on a computer, attracting interest in [[chaos theory]].<ref>{{cite journal|last=Lorenz|first=Edward N.|title=Deterministic Nonperiodic Flow|journal=Journal of the Atmospheric Sciences |volume=20 |issue=2 |pages=130–141|year=1963|url=http://www.nd.edu/~powers/ame.60611/lorenz.article.pdf |doi=10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2 |bibcode=1963JAtS...20..130L}}</ref>
* Molecular dynamics invented independently by [[Aneesur Rahman]].<ref>{{cite journal|last=Rahman|first=A|title=Correlations in the Motion of Atoms in Liquid Argon|journal=Phys Rev|year=1964|volume=136|issue=2A|pages=A405–A41|doi=10.1103/PhysRev.136.A405}}</ref>▼
* 1961 – Using computational investigations of the [[3-body problem]], [[Michael Minovitch]] formulates the [[gravity assist]] method.<ref>Minovitch, Michael: "A method for determining interplanetary free-fall reconnaissance trajectories," Jet Propulsion Laboratory Technical Memo TM-312-130, pages 38-44 (23 August 1961).</ref><ref>Christopher Riley and Dallas Campbell, Oct 22, 2012. [http://www.bbc.co.uk%2Fnews%2Fscience-environment-20033940&ei=j-29UZ6sNIexPInBgfAG&usg=AFQjCNEj30660hWJWTpfDJohrZek5KxAFA "The maths that made Voyager possible"]. BBC News Science and Environment. Recovered 16 Jun 2013.</ref>
▲* 1964 – Molecular dynamics invented independently by [[Aneesur Rahman]].<ref>{{cite journal|last=Rahman|first=A|title=Correlations in the Motion of Atoms in Liquid Argon|journal=Phys Rev|year=1964|volume=136|issue=2A|pages=A405–A41|doi=10.1103/PhysRev.136.A405|bibcode=1964PhRv..136..405R}}</ref>
* 1965 – [[fast Fourier transform]] developed by [[James W. Cooley]] and [[John W. Tukey]].<ref>{{cite journal | last1 = Cooley | first1 = James W. | last2 = Tukey | first2 = John W. | year = 1965 | title = An algorithm for the machine calculation of complex Fourier series | url = http://attach3.bdwm.net/attach/0Announce/groups/GROUP_3/MathTools/D6714701A/D69595345/M.1089260001.A/CooleyJ_AlgMCC.pdf | journal = Math. Comput. | volume = 19 | issue = 90 | pages = 297–301 | doi = 10.1090/s0025-5718-1965-0178586-1 | doi-access = free }}{{Dead link|date=October 2023 |bot=InternetArchiveBot |fix-attempted=yes }}</ref>
* 1964 – [[Walter Kohn]], with [[Lu Jeu Sham]] and [[Pierre Hohenberg]], instigates the development of [[density functional theory]],<ref>
{{cite journal
| last1 = Kohn | first1 = Walter
| last2 = Hohenberg | first2 = Pierre
| year = 1964| title = Inhomogeneous Electron Gas| journal = [[Physical Review]]| volume = 136 | pages = B864–B871| issue = 3B | doi = 10.1103/PhysRev.136.B864|bibcode = 1964PhRv..136..864H | doi-access = free}}</ref><ref>
{{cite journal
| last1 = Kohn | first1 = Walter
| last2 = Sham | first2 = Lu Jeu
| year = 1965
| title = Self-Consistent Equations Including Exchange and Correlation Effects
| journal = [[Physical Review]]
| volume = 140 | pages = A1133–A1138 | issue = 4A
| doi = 10.1103/PHYSREV.140.A1133
|bibcode = 1965PhRv..140.1133K | doi-access = free}}</ref> for which he shares the 1998 Nobel Chemistry Prize with [[John Pople]].<ref>{{cite web | title = The Nobel Prize in Chemistry 1998 | publisher = Nobelprize.org | url = http://nobelprize.org/nobel_prizes/chemistry/laureates/1998/index.html|access-date=2008-10-06}}</ref> This contribution is arguably the earliest work to which Nobels were given for a computer program or computational technique.
* First regression calculations in economics.
==1970s==
* 1975 – [[Benoit Mandelbrot
* 1977 – [[Kenneth Appel]] and [[Wolfgang Haken]] prove the [[four colour theorem]], the [[Computer-assisted proof
==1980s==
* [[Fast multipole method]] (voted one of the top 10 [[algorithms]] of the 20th century) invented by [[Vladimir Rokhlin, Jr.|Vladimir Rokhlin]] and [[Leslie Greengard]].<ref>L. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems, MIT, Cambridge, (1987).</ref><ref>Rokhlin, Vladimir (1985). "Rapid Solution of Integral Equations of Classic Potential Theory." J. Computational Physics Vol. 60, pp. 187-207.</ref><ref>{{cite journal | last1 = Greengard | first1 = L.
* [[Car–Parrinello molecular dynamics]] developed by [[Roberto Car]] and [[Michele Parrinello]]
==1990s==
* 1990 – In computational genomics and [[sequence analysis]], the [[Human Genome Project]], an endeavour to sequence the entire [[human genome]], begins
* 1998 – [[Kepler conjecture]] is
* The appearance of the first research grids using [[volunteer computing]] – [[GIMPS]] (1996), [[distributed.net]] (1997) and [[Seti@Home]] (1999).
==2000s==
* 2000 – The [[Human Genome Project]] completes a rough draft of [[human genome]]
* 2003 – The [[Human Genome Project]] completed
* 2002 – The [[BOINC]] architecture is launched.
==2010s==
*[[Foldit]] players solve virus structure, one of the first cases of a [[Gamification|game solving a scientific question]].
----
{{Further|Timeline of computing 2020–2029|List of years in science#2020s}}
==See also==
* [[
* [[History of computing]]
* [[Timeline of computing]]▼
* [[History of mathematics]]
* [[Timeline of mathematics]]
* [[Timeline of algorithms]]
* [[Timeline of computational physics]]
* [[Timeline of computational mathematics]]
* [[History of computing hardware]]
▲* [[Timeline of modern scientific computing]]
==References==
{{
==External links==
* SIAM (Society for Industrial and Applied Mathematics) News. [http://www.siam.org/news/news.php?id=637 Top 10 Algorithms of the 20th Century].
* [https://web.archive.org/web/20130125035840/http://history.siam.org/ The History of Numerical Analysis and Scientific Computing @ SIAM (Society for Industrial and Applied Mathematics)]
*
* {{cite journal | last1 = Anderson
*IEEE Milestones
{{
[[Category:Computational science]]
[[Category:Science timelines|
[[Category:Computing timelines|s]]
|