Legendre rational functions: Difference between revisions

Content deleted Content added
m ce
No edit summary
 
(7 intermediate revisions by 7 users not shown)
Line 1:
{{Short description|Sequence of orthogonal functions on [0, ∞)}}
[[Image:LegendreRational1.png|thumb|300px|Plot of the Legendre rational functions for n=0,1,2 and 3 for ''x'' between 0.01 and 100.]]
In [[mathematics]], the '''Legendre rational functions''' are a sequence of [[orthogonal functions]] on [ {{closed-open|0, ∞)}}. They are obtained by composing the [[Cayley transform]] with [[Legendre polynomials]].
 
A rational Legendre function of degree ''n'' is defined as:
:<math display="block">R_n(x) = \frac{\sqrt{2}}{x+1}\,L_nP_n\left(\frac{x-1}{x+1}\right)</math>
 
where <math>L_nP_n(x)</math> is a Legendre polynomial. These functions are [[eigenfunction]]s of the singular [[Sturm-LiouvilleSturm–Liouville problem]]:
:<math>R_n(x) = \frac{\sqrt{2}}{x+1}\,L_n\left(\frac{x-1}{x+1}\right)</math>
<math display="block">(x+1) \frac{d}{dx}\left(x \frac{d}{dx} \left[\left(x+1\right) v(x)\right]\right) + \lambda v(x) = 0</math>
 
where <math>L_n(x)</math> is a Legendre polynomial. These functions are [[eigenfunction]]s of the singular [[Sturm-Liouville problem]]:
 
:<math>(x+1)\partial_x(x\partial_x((x+1)v(x)))+\lambda v(x)=0</math>
 
with eigenvalues
:<math display="block">\lambda_n=n(n+1)\,</math>
 
:<math>\lambda_n=n(n+1)\,</math>
 
== Properties==
Line 19 ⟶ 15:
 
=== Recursion ===
:<math display="block">R_{n+1}(x)=\frac{2n+1}{n+1}\,\frac{x-1}{x+1}\,R_n(x)-\frac{n}{n+1}\,R_{n-1}(x)\quad\mathrm{for\,n\ge 1}</math>
 
:<math>R_{n+1}(x)=\frac{2n+1}{n+1}\,\frac{x-1}{x+1}\,R_n(x)-\frac{n}{n+1}\,R_{n-1}(x)\quad\mathrm{for\,n\ge 1}</math>
 
and
:<math display="block">2 (2n+1) R_n(x) = \left(x+1\right)^2 \left(\partial_xfrac{d}{dx} R_{n+1}(x) - \partial_xfrac{d}{dx} R_{n-1}(x)\right) + (x+1) \left(R_{n+1}(x) - R_{n-1}(x)\right)</math>
 
:<math>2(2n+1)R_n(x)=(x+1)^2(\partial_x R_{n+1}(x)-\partial_x R_{n-1}(x))+(x+1)(R_{n+1}(x)-R_{n-1}(x))</math>
 
=== Limiting behavior ===
[[Image:LegendreRational2.png|thumb|300px|Plot of the seventh order (''n=7'') Legendre rational function multiplied by ''1+x'' for ''x'' between 0.01 and 100. Note that there are ''n'' zeroes arranged symmetrically about ''x=1'' and if ''x''<sub>0</sub> is a zero, then ''1/''x''<sub>0</sub> is a zero as well. These properties hold for all orders.]]
It can be shown that
:<math display="block">\lim_{x\rightarrow to\infty}(x+1)R_n(x)=\sqrt{2}</math>
 
:<math>\lim_{x\rightarrow \infty}(x+1)R_n(x)=\sqrt{2}</math>
 
and
:<math display="block">(\lim_{x+1)\partial_x(to\infty}x\partial_x((x+1)vR_n(x)))+\lambda v(x)=0</math>
 
:<math>\lim_{x\rightarrow \infty}x\partial_x((x+1)R_n(x))=0</math>
 
=== Orthogonality ===
 
:<math display="block">\int_{0}^\infty R_m(x)\,R_n(x)\,dx=\frac{2}{2n+1}\delta_{nm}</math>
 
where <math>\delta_{nm}</math> is the [[Kronecker delta]] function.
 
== Particular values ==
 
<math display="block">\begin{align}
:<math>R_0(x)=1\,</math>
:<math>R_1R_0(x) &= \frac{x-1\sqrt{2}}{x+1}\,</math>1 \\
:<math>R_2R_1(x) &= \frac{x^\sqrt{2-4x}}{x+1}\,\frac{x-1}{(x+1)^2} \\,</math>
:<math>R_3R_2(x) &= \frac{\sqrt{2}}{x+1}\,\frac{x^3-9x^2+9x-4x+1}{(x+1)^32} \\,</math>
:<math>R_4R_3(x) &= \frac{\sqrt{2}}{x+1}\,\frac{x^43-16x^3+36x9x^2-16x+9x-1}{(x+1)^43} \\,</math>
R_4(x) &= \frac{\sqrt{2}}{x+1}\,\frac{x^4-16x^3+36x^2-16x+1}{(x+1)^4}
\end{align}</math>
 
== References ==
 
* {{cite journal
| last = Zhong-Qing
| first = Wang
| authorlinkauthor2 = Ben-Yu, Guo
| year = 2005
|author2=Ben-Yu, Guo
| year = 2005
| title = A mixed spectral method for incompressible viscous fluid flow in an infinite strip
| journal = Mat.Computational apl.& comput.Applied Mathematics
| publisher = Sociedade Brasileira de Matemática Aplicada e Computacional
| volume = 24
| issue = 3
| pages =
| doi = 10.1590/S0101-82052005000300002
| iddoi-access = free
| url = http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0101-82052005000300002&lng=en&nrm=iso
| format = PDF
| accessdate = 2006-08-08
}}