Content deleted Content added
No edit summary |
|||
(6 intermediate revisions by 5 users not shown) | |||
Line 7:
:<math>i : X \hookrightarrow Y : x \mapsto x</math>
is continuous, i.e. if there exists a constant ''C''
:<math>\| x \|_Y \leq C \| x \|_X</math>
for every ''x'' in ''X'', then ''X'' is said to be '''continuously embedded''' in ''Y''. Some authors use the hooked arrow
==Examples==
Line 35:
::<math>f_n (x) = \begin{cases} - n^2 x + n , & 0 \leq x \leq \tfrac 1 n; \\ 0, & \text{otherwise.} \end{cases}</math>
:Then, for every ''n'', ||''f''<sub>''n''</sub>||<sub>''Y''</sub> = ||''f''<sub>''n''</sub>||<sub>
::<math>\| f_n \|_{L^1} = \int_0^1 | f_n (x) | \, \mathrm{d} x = \frac1{2}.</math>
Line 47:
==References==
* {{cite book |author1=
[[Category:Functional analysis]]
|