Content deleted Content added
Gene Nygaard (talk | contribs) spaces, links |
m Replacing File:Heat Content of Zn(c,l,g).PNG with Commons version File:Enthalpy of Zn(c,l,g).PNG (report errors here) |
||
(414 intermediate revisions by more than 100 users not shown) | |||
Line 1:
{{Short description|Energy to convert a liquid substance to a gas at a given pressure}}
{{Use American English|date = March 2019}}
{{Use dmy dates|date=October 2014}}
{{more footnotes needed|date=March 2016}}
[[Image:Heat of Vaporization (Benzene+Acetone+Methanol+Water).png|thumb|280px|Temperature-dependency of the heats of vaporization for [[water]], [[methanol]], [[benzene]], and [[acetone]]]]
In [[thermodynamics]], the '''enthalpy of vaporization''' (symbol {{math|∆''H''<sub>vap</sub>}}), also known as the ('''latent''') '''heat of vaporization''' or '''heat of evaporation''', is the amount of energy ([[enthalpy]]) that must be added to a [[liquid]] substance to [[Phase transition|transform]] a quantity of that substance into a [[gas]]. The enthalpy of vaporization is a function of the [[pressure]] and temperature at which the transformation ([[vaporization]] or [[evaporation]]) takes place.
The enthalpy of vaporization is often quoted for the [[normal boiling point|normal boiling temperature]] of the substance. Although tabulated values are usually corrected to 298 [[Kelvin|K]], that correction is often smaller than the [[Significant figures|uncertainty]] in the measured value.
The heat of vaporization is temperature-dependent, though a constant heat of vaporization can be assumed for small temperature ranges and for [[reduced temperature]] {{math|''T{{sub|r}}'' ≪ 1}}. The heat of vaporization diminishes with increasing temperature and it vanishes completely at a certain point called the [[critical temperature]] ({{math|1=''T{{sub|r}}'' = 1}}). Above the critical temperature, the liquid and [[vapor]] phases are indistinguishable, and the substance is called a [[supercritical fluid]].
== Units ==
Values are usually quoted in [[joule|J]]/[[mole (unit)|mol]], or kJ/mol (molar enthalpy of vaporization), although kJ/kg, or J/g (specific heat of vaporization), and older units like [[calorie|kcal]]/mol, cal/g and [[British thermal unit|Btu]]/lb are sometimes still used among others.
== Enthalpy of condensation ==
The '''enthalpy of condensation''' (or '''heat of condensation''') is by definition equal to the enthalpy of vaporization with the opposite sign: enthalpy changes of vaporization are always positive (heat is absorbed by the substance), whereas enthalpy changes of condensation are always negative (heat is released by the substance).
== Thermodynamic background ==
[[File:Enthalpy of Zn(c,l,g).PNG|thumb|right|350px|'''Molar enthalpy of zinc''' above 298.15{{nbsp}}K and at 1{{nbsp}}atm pressure, showing discontinuities at the melting and boiling points. The enthalpy of melting (Δ''H''°m) of zinc is 7323{{nbsp}}J/mol, and the enthalpy of vaporization (Δ''H''°v) is {{val|115330|u=J/mol}}.]]
The enthalpy of vaporization can be written as
:<math>\Delta H_\text{vap} = \Delta U_\text{vap} + p\,\Delta V</math>
It is equal to the increased [[internal energy]] of the vapor phase compared with the liquid phase, plus the work done against ambient pressure. The increase in the internal energy can be viewed as the energy required to overcome the [[Chemical bond#Intermolecular interactions|intermolecular interactions]] in the liquid (or solid, in the case of [[Sublimation (chemistry)|sublimation]]). Hence [[helium]] has a particularly low enthalpy of vaporization, 0.0845 kJ/mol, as the [[van der Waals force]]s between helium [[atom]]s are particularly weak. On the other hand, the [[molecule]]s in liquid [[Water (molecule)|water]] are held together by relatively strong [[hydrogen bond]]s, and its enthalpy of vaporization, 40.65 kJ/mol, is more than five times the energy required to heat the same quantity of water from 0 °C to 100 °C ([[Heat capacity|''c''<sub>p</sub>]] = 75.3 J/K·mol). Care must be taken, however, when using enthalpies of vaporization to ''measure'' the strength of intermolecular forces, as these forces may persist to an extent in the gas phase (as is the case with [[hydrogen fluoride]]), and so the calculated value of the [[bond strength]] will be too low. This is particularly true of metals, which often form [[Covalent bond|covalently bonded]] molecules in the gas phase: in these cases, the [[enthalpy of atomization]] must be used to obtain a true value of the [[bond energy]].
An alternative description is to view the enthalpy of condensation as the heat which must be released to the surroundings to compensate for the drop in [[entropy]] when a gas condenses to a liquid. As the liquid and gas are in [[Chemical equilibrium|equilibrium]] at the boiling point (''T''<sub>b</sub>), [[Gibbs free energy|Δ<sub>v</sub>''G'']] = 0, which leads to:
:<math>\Delta_\text{v} S = S_\text{gas} - S_\text{liquid} = \frac{\Delta_\text{v} H}{T_\text{b}}</math>
As neither entropy nor [[enthalpy]] vary greatly with temperature, it is normal to use the tabulated standard values without any correction for the difference in temperature from 298 K. A correction must be made if the [[pressure]] is different from 100 [[pascal (unit)|kPa]], as the entropy of an [[ideal gas]] is proportional to the logarithm of its pressure. The entropies of liquids vary little with pressure, as the [[Thermal expansion|coefficient of thermal expansion]] of a liquid is small.<ref>Note that the rate of change of entropy with pressure and the rate of thermal expansion are related by the [[Maxwell Relations|Maxwell Relation]]:
:<math>\left(\frac{\partial S}{\partial P}\right)_T = \left(\frac{\partial V}{\partial T}\right)_P.</math></ref>
These two definitions are equivalent: the boiling point is the temperature at which the increased entropy of the gas phase overcomes the intermolecular forces. As a given quantity of matter always has a higher entropy in the gas phase than in a condensed phase (<math>\Delta_\text{v} S</math> is always positive), and from
:<math>\Delta G = \Delta H - T\Delta S</math>,
the [[Gibbs free energy]] change falls with increasing temperature: gases are favored at higher temperatures, as is observed in practice.
==Vaporization enthalpy of electrolyte solutions==
Estimation of the enthalpy of vaporization of electrolyte solutions can be simply carried out using equations based on the chemical thermodynamic models, such as Pitzer model<ref>{{cite journal|last1=Ge|first1=Xinlei|last2=Wang|first2=Xidong|title=Estimation of Freezing Point Depression, Boiling Point Elevation, and Vaporization Enthalpies of Electrolyte Solutions|journal=Industrial & Engineering Chemistry Research|date=20 May 2009|volume=48|issue=10|pages=5123|doi=10.1021/ie900434h|doi-access=free}}</ref> or TCPC model.<ref name="GeWang2009">{{cite journal|last1=Ge|first1=Xinlei|last2=Wang|first2=Xidong|title=Calculations of Freezing Point Depression, Boiling Point Elevation, Vapor Pressure and Enthalpies of Vaporization of Electrolyte Solutions by a Modified Three-Characteristic Parameter Correlation Model|journal=Journal of Solution Chemistry|volume=38|issue=9|year=2009|pages=1097–1117|issn=0095-9782|doi=10.1007/s10953-009-9433-0|s2cid=96186176}}</ref>
== Selected values ==
{{more citations needed section|date=September 2018}}
=== Elements ===
<div class="thumb" style="table-layout:fixed; margin:5px 5px 5px 0; clear:both; width:98%;">
<div class="overflowbugx" style="table-layout:fixed; overflow:auto;">
{| border=
! colspan=20 style="background:{{element color|table title}}; padding:2px 4px;" | Enthalpies of vaporization of the elements
|- style="background:{{element color|table colheader}}"
!
! [[Alkali metal|1]]
! [[Alkaline earth metal|2]]
!
! [[Group 3 element|3]]
! [[Group 4 element|4]]
! [[Group 5 element|5]]
! [[Group 6 element|6]]
! [[Group 7 element|7]]
! [[Group 8 element|8]]
! [[Group 9 element|9]]
! [[Group 10 element|10]]
! [[Group 11 element|11]]
! [[Group 12 element|12]]
! [[Boron group|13]]
! [[Carbon group|14]]
! [[Nitrogen group|15]]
! [[Chalcogen|16]]
! [[Halogen|17]]
! [[Noble gas|18]]
|-
!
|-
!
|-
! [[Period 1 element|1]]
| {{element cell
| colspan="
| {{element cell
|-
! [[Period 2 element|2]]
| {{element cell
| {{element cell
| colspan="
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
|-
! [[Period 3 element|3]]
| {{element cell
| {{element cell
| colspan="
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
|-
! [[Period 4 element|4]]
| {{element cell
| {{element cell
|
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell property|1=Kr|3=9.08 |7=#ffccff|2=krypton |5=primordial}}
|-
! [[Period 5 element|5]]
| {{element cell
| {{element cell
|
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell property|1=Xe|3=12.6 |7=#ccffcc|2=xenon |5=primordial}}
|-
! [[Period 6 element|6]]
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell property|1=Rn|3=18.1 |7=#ccffcc|2=radon |5=from decay}}
|-
! [[Period 7 element|7]]
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell property|1=Og|3=''n/a''|7=#ffffff|2=oganesson |5=synthetic}}
|-
|
|-
| colspan="4"
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
|-
| colspan="4"
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
| {{element cell
|-
|
|-
|
| colspan=20 | Enthalpy in kJ/mol, measured at their respective normal boiling points
|- style="height:2em; border:1px solid grey; text-align:center;"
|
| colspan=3 style="background:#ffccff;" | 0–10 kJ/mol
| colspan=3 style="background:#ccffcc;" | 10–100 kJ/mol
| colspan=3 style="background:#99ccff;" | 100–300 kJ/mol
| colspan=3 style="background:#ffffcc;" | >300 kJ/mol
|}</div></div>
The vaporization of metals is a key step in [[metal vapor synthesis]], which exploits the increased reactivity of metal atoms or small particles relative to the bulk elements.
===Other common substances===
Enthalpies of vaporization of common substances, measured at their respective standard boiling points:
{| class="wikitable sortable"
! rowspan=2 | Compound
! colspan=3 | Boiling point, at normal pressure
! colspan=2 | Heat of vaporization
|-
! (K)
! (°C)
! (°F)
! ([[kilojoule per mole|kJ/mol]])
! (J/g)
|-
| [[Acetone]]
| 329 || 56 || 133
| 31.300
| 538.9
|-
| [[Aluminium]]
| 2792 || 2519 || 4566
| 294.0
| 10500
|-
| [[Ammonia]]
| 240 || −33.34 || −28
| 23.35
| 1371
|-
| [[Butane]]
| 272–274 || −1 || 30–34
| 21.0
| 320
|-
| [[Diethyl ether]]
| 307.8 || 34.6 || 94.3
| 26.17
| 353.1
|-
| [[Ethanol]]
| 352 || 78.37 || 173
| 38.6
| 841
|-
| [[Hydrogen]] ([[parahydrogen]])
| 20.271 || −252.879 || −423.182
| 0.8992
| 446.1
|-
| [[Iron]]
| 3134 || 2862 || 5182
| 340
| 6090
|-
| [[Isopropyl alcohol]]
| 356 || 82.6 || 181
| 44
| 732.2
|-
| [[Methane]]
| 112 || −161 || −259
| 8.170
| 480.6
|-
| [[Methanol]]
| 338 || 64.7 || 148
| 35.2<ref>NIST</ref>
| 1104
|-
| [[Propane]]
| 231 || −42 || −44
| 15.7
| 356
|-
| [[Phosphine]]
| 185 || −87.7 || −126
| 14.6
| 429.4
|-
| [[Properties of water|Water]]
| 373.15 || 100 || 212
| 40.66
| 2257
|}
==See also==
*[[Clausius–Clapeyron relation]]
*[[Shimansky equation]], describes the temperature dependence of the heat of vaporization
*[[Enthalpy of fusion]], specific heat of melting
*[[Enthalpy of sublimation]]
*[[Joback method]], estimation of the heat of vaporization at the normal boiling point from molecular structures
*[[Latent heat]]
==
{{Reflist}}
*[http://www.codata.info/resources/databases/key1.html CODATA Key Values for Thermodynamics]
*{{cite book|last1=Gmelin|first1=Leopold|title=Gmelin-Handbuch der anorganischen Chemie / 08 a|date=1985|publisher=Springer|___location=Berlin [u.a.]|isbn=978-3-540-93516-2|pages=116–117|edition=8., völlig neu bearb. Aufl.}}
*[http://webbook.nist.gov/chemistry/ NIST Chemistry WebBook]
*{{cite book|last1=Young|first1=Francis W. Sears, Mark W. Zemansky, Hugh D.|title=University physics|date=1982|publisher=Addison-Wesley|___location=Reading, Mass.|isbn=978-0-201-07199-3|edition=6th}}
{{States of matter}}
{{Authority control}}
{{DEFAULTSORT:Enthalpy Of Vaporization}}
[[Category:Enthalpy]]
|