Content deleted Content added
→top: ce |
Citation bot (talk | contribs) Added bibcode. Removed URL that duplicated identifier. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 38/990 |
||
(24 intermediate revisions by 14 users not shown) | |||
Line 1:
A '''geometric program''' ('''GP''') is an [[optimization (mathematics)|optimization]] problem of the form
:<math>
\begin{array}{ll}
:: <math>f_i(x) \leq 1, \quad i = 1,\dots,m</math>▼
\mbox{minimize} & f_0(x) \\
:: <math>h_i(x) = 1,\quad i = 1,\dots,p</math>▼
\end{array}
</math>
where <math>f_0,\dots,f_m</math> are [[posynomials]] and <math>g_1,\dots,g_p</math> are monomials. In the context of geometric programming (unlike
▲In the context of geometric programming (unlike all other disciplines), a monomial is a function <math>h:\mathbb{R}_{++}^n \to \mathbb{R}</math> defined as
where <math> c > 0 \ </math> and <math>a_i \in \mathbb{R} </math>. A posynomial is any sum of monomials.<ref name="duffin">{{cite book▼
▲:<math>h(x) = c x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n} </math>
| author = Richard J. Duffin▼
|author2=Elmor L. Peterson |author3=Clarence Zener▼
| title = Geometric Programming▼
| publisher = John Wiley and Sons▼
| year = 1967▼
| pages = 278▼
| isbn = 0-471-22370-0▼
Geometric programming is
▲where <math> c > 0 \ </math> and <math>a_i \in \mathbb{R} </math>.
closely related to [[convex optimization]]: any GP can be made convex by means of a change of variables.<ref name="tutorial"/> GPs have numerous applications, including component sizing in [[Integrated circuit|IC]] design,<ref>M. Hershenson, S. Boyd, and T. Lee. ''[https://web.stanford.edu/~boyd/papers/opamp.html Optimal Design of a CMOS Op-amp via Geometric Programming].'' Retrieved 8 January 2019.</ref><ref>S. Boyd, S. J. Kim, D. Patil, and M. Horowitz. ''[https://web.stanford.edu/~boyd/papers/gp_digital_ckt.html Digital Circuit Optimization via Geometric Programming].'' Retrieved 20 October 2019.</ref> aircraft design,<ref>W. Hoburg and P. Abbeel. ''[https://people.eecs.berkeley.edu/~pabbeel/papers/2014-AIAA-GP-aircraft-design.pdf Geometric programming for aircraft design optimization].'' AIAA Journal 52.11 (2014): 2414-2426.</ref> [[maximum likelihood estimation]] for [[logistic regression]] in [[statistics]], and parameter tuning of positive [[Linear dynamical system|linear systems]] in [[control theory]].<ref>{{Cite journal|last1=Ogura|first1=Masaki|last2=Kishida|first2=Masako|last3=Lam|first3=James|date=2020|title=Geometric Programming for Optimal Positive Linear Systems|journal=IEEE Transactions on Automatic Control|volume=65|issue=11|pages=4648–4663|doi=10.1109/TAC.2019.2960697|issn=0018-9286|arxiv=1904.12976|bibcode=2020ITAC...65.4648O |s2cid=140222942 }}</ref>
==Convex form==
Geometric programs are not
==Software==
Several software packages
* [https://www.mosek.com/ MOSEK] is a commercial solver capable of solving geometric programs as well as other non-linear optimization problems.
* [http://cvxopt.org/ CVXOPT] is an open-source solver for convex optimization problems.
* [https://github.com/
*[https://web.stanford.edu/~boyd/ggplab/ GGPLAB] is a MATLAB toolbox for specifying and solving geometric programs (GPs) and generalized geometric programs (GGPs).
* [https://www.cvxpy.org/tutorial/dgp/index.html CVXPY] is a Python-embedded modeling language for specifying and solving convex optimization problems, including GPs, GGPs, and LLCPs.<ref name="dgp"/>
==See also==
*[[Signomial]]
*[[Clarence Zener]]
==
{{reflist}}
▲ | author = Richard J. Duffin
▲ |author2=Elmor L. Peterson |author3=Clarence Zener
▲ | title = Geometric Programming
▲ | publisher = John Wiley and Sons
▲ | year = 1967
▲ | pages = 278
▲ | isbn = 0-471-22370-0
▲* S. Boyd, S. J. Kim, L. Vandenberghe, and A. Hassibi, [http://www.stanford.edu/~boyd/gp_tutorial.html A Tutorial on Geometric Programming]
▲[[Category:Mathematical optimization]]
|