Content deleted Content added
Yes I’m Tags: Mobile edit Mobile web edit |
There was a Script warning on the page from a citation template, "Category:CS1 maint: date and year", fixed by removing the redundant year= field as date= was already set |
||
(34 intermediate revisions by 19 users not shown) | |||
Line 1:
{{Short description|Mathematical function on ordinals}}
In [[mathematics]], the '''Veblen functions''' are a hierarchy of [[normal function]]s ([[continuous function (set theory)|continuous]] [[strictly increasing function|strictly increasing]] [[function (mathematics)|function]]s from [[ordinal number|ordinal]]s to ordinals), introduced by [[Oswald Veblen]] in {{harvtxt|Veblen|1908}}. If ''φ''<sub>0</sub> is any normal function, then for any non-zero ordinal ''α'', ''φ''<sub>''α''</sub> is the function enumerating the common [[fixed point (mathematics)|fixed point]]s of ''φ''<sub>''β''</sub> for ''β''<''α''. These functions are
==
In the special case when ''φ''<sub>0</sub>(''α'')=ω<sup>''α''</sup>
this family of functions is known as the '''Veblen hierarchy'''.
The function ''φ''<sub>1</sub> is the same as the [[Epsilon numbers (mathematics)|ε function]]: ''φ''<sub>1</sub>(''α'')= ε<sub>''α''</sub>.<ref>[[Stephen G. Simpson]], ''Subsystems of Second-order Arithmetic'' (2009, p.387)</ref> If <math>\alpha < \beta \,,</math> then <math>\varphi_{\alpha}(\varphi_{\beta}(\gamma)) = \varphi_{\beta}(\gamma)</math>.<ref
=== Fundamental sequences for the Veblen hierarchy ===
{{unsourced section|date=May 2023}}
The fundamental sequence for an ordinal with [[cofinality]] ω is a distinguished strictly increasing ω-sequence
A variation of [[Ordinal arithmetic#Cantor normal form|Cantor normal form]] used in connection with the Veblen hierarchy is
For any ''β'', if ''γ'' is a limit with <math>\gamma < \varphi_{\beta} (\gamma) \,,</math> then let <math>\varphi_{\beta}(\gamma) [n] = \varphi_{\beta}(\gamma [n]) \,.</math>
No such sequence can be provided for <math>\varphi_0(0)</math> = ω<sup>0</sup> = 1 because it does not have cofinality ω.
Line 21 ⟶ 23:
For <math>\varphi_{\beta+1}(\gamma+1)</math>, we use <math>\varphi_{\beta+1}(\gamma+1) [0] = \varphi_{\beta+1}(\gamma)+1 </math> and <math>\varphi_{\beta+1}(\gamma+1) [n+1] = \varphi_{\beta} (\varphi_{\beta+1}(\gamma+1) [n]) \,.</math>
Now suppose that ''β'' is a limit:
If <math>\beta < \varphi_{\beta}(0)</math>, then let <math>\varphi_{\beta}(0) [n] = \varphi_{\beta [n]}(0) \,.</math>
Line 30 ⟶ 32:
===The Γ function===
The function Γ enumerates the ordinals ''α'' such that φ<sub>''α''</sub>(0) = ''α''.
Γ<sub>0</sub> is the [[Feferman–Schütte ordinal]], i.e. it is the smallest ''α'' such that ''φ''<sub>''α''</sub>(0) = ''α''.
For Γ<sub>0</sub>, a fundamental sequence could be chosen to be <math>\Gamma_0 [0] = 0 </math> and <math>\Gamma_0 [n+1] = \varphi_{\Gamma_0 [n]} (0) \,.</math>
Line 37 ⟶ 39:
For Γ<sub>β+1</sub>, let <math>\Gamma_{\beta+1} [0] = \Gamma_{\beta} + 1 </math> and <math>\Gamma_{\beta+1} [n+1] = \varphi_{\Gamma_{\beta+1} [n]} (0) \,.</math>
For Γ<sub>''β''</sub> where <math>\beta < \Gamma_{\beta} </math> is a limit, let <math>\Gamma_{\beta} [n] = \Gamma_{\beta [n]} \,.</math>
==Generalizations==
Line 52 ⟶ 54:
For example, <math>\varphi(1,0,\gamma)</math> is the <math>(1+\gamma)</math>-th fixed point of the functions <math>\xi\mapsto\varphi(\xi,0)</math>, namely <math>\Gamma_\gamma</math>; then <math>\varphi(1,1,\gamma)</math> enumerates the fixed points of that function, i.e., of the <math>\xi\mapsto\Gamma_\xi</math> function; and <math>\varphi(2,0,\gamma)</math> enumerates the fixed points of all the <math>\xi\mapsto\varphi(1,\xi,0)</math>. Each instance of the generalized Veblen functions is continuous in the ''last nonzero'' variable (i.e., if one variable is made to vary and all later variables are kept constantly equal to zero).
The ordinal <math>\varphi(1,0,0,0)</math> is sometimes known as the [[Ackermann ordinal]]. The limit of the <math>\varphi(1,0,...,0)</math> where the number of zeroes ranges over ω, is sometimes known as the [[Small Veblen ordinal|
Every non-zero ordinal <math>\alpha</math> less than the small Veblen ordinal (SVO) can be uniquely written in normal form for the finitary Veblen function:
Line 80 ⟶ 82:
===Transfinitely many variables===
More generally, Veblen showed that φ can be defined even for a transfinite sequence of ordinals α<sub>β</sub>, provided that all but a finite number of them are zero. Notice that if such a sequence of ordinals is chosen from those less than an uncountable [[regular cardinal]] κ, then the sequence may be encoded as a single ordinal less than κ<sup>κ</sup> (ordinal exponentiation). So one is defining a function φ from κ<sup>κ</sup> into κ.
The definition can be given as follows: let <u>α</u> be a transfinite sequence of ordinals (i.e., an ordinal function with finite support) ''
For example, if <u>α</u>=(
The smallest ordinal ''α'' such that ''α'' is greater than ''φ'' applied to any function with support in ''α'' (i.e.,
=== Further extensions ===
In {{harvtxt|Massmann|Kwon|2023}}, the Veblen function was extended further to a somewhat technical system known as ''dimensional Veblen''. In this, one may take fixed points or row numbers, meaning expressions such as ''φ''(1@(1,0)) are valid (representing the large Veblen ordinal), visualised as multi-dimensional arrays. It was proven that all ordinals below the [[Bachmann–Howard ordinal]] could be represented in this system, and that the representations for all ordinals below the [[large Veblen ordinal]] were aesthetically the same as in the original system.
==Values==
The function takes on several prominent values:
* <math>\varphi(1,0) = \varepsilon_0</math> is the [[Proof theoretic ordinal|proof-theoretic ordinal]] [[Gentzen's consistency proof|of]] [[Peano axioms|Peano arithmetic]] and the limit of what ordinals can be represented in terms of [[Cantor normal form]] and smaller ordinals.
* <math>\varphi(\omega,0)</math>, a bound on the order types of the [[Path ordering (term rewriting)|recursive path orderings]] with finitely many function symbols, and the smallest ordinal closed under [[Primitive recursive function|primitive recursive]] ordinal functions.<ref>N. Dershowitz, M. Okada, [https://www.cs.tau.ac.il/~nachumd/papers/ProofTheoretic.pdf Proof Theoretic Techniques for Term Rewriting Theory] (1988). p.105</ref><ref>{{Cite journal |last=Avigad |first=Jeremy |authorlink =
Jeremy Avigad|date=May 23, 2001 |title=An ordinal analysis of admissible set theory using recursion on ordinal notations |url=https://www.andrew.cmu.edu/user/avigad/Papers/admissible.pdf |journal=Journal of Mathematical Logic |volume=2 |pages=91--112 |doi=10.1142/s0219061302000126}}</ref>
* The [[Feferman–Schütte ordinal]] <math>\Gamma_0</math> is equal to <math>\varphi(1,0,0)</math>.<ref>D. Madore, "[http://www.madore.org/~david/math/ordinal-zoo.pdf A Zoo of Ordinals]" (2017). Accessed 02 November 2022.</ref>
* The [[small Veblen ordinal]] is equal to <math>\varphi\begin{pmatrix}1 \\ \omega\end{pmatrix}</math>.<ref>{{cite journal | url=https://link.springer.com/content/pdf/10.1007/s00153-019-00658-x.pdf | doi=10.1007/s00153-019-00658-x | title=A flexible type system for the small Veblen ordinal | year=2019 | last1=Ranzi | first1=Florian | last2=Strahm | first2=Thomas | journal=Archive for Mathematical Logic | volume=58 | issue=5–6 | pages=711–751 | s2cid=253675808 }}</ref>
==References==
* <!--Not considered reliable, according to a revert on [[Small Veblen ordinal]].-->Hilbert Levitz, ''[http://www.cs.fsu.edu/~levitz/ords.ps Transfinite Ordinals and Their Notations: For The Uninitiated]'', expository article (8 pages, in [[PostScript]])
*{{citation|last= Pohlers|first=
*{{citation|mr=0505313|last= Schütte|first= Kurt |title=Proof theory|series= Grundlehren der Mathematischen Wissenschaften|volume= 225|publisher= Springer-Verlag|place= Berlin-New York|year= 1977|pages= xii+299 | isbn= 978-3-540-07911-
*{{citation|mr=0882549|last= Takeuti|first= Gaisi |authorlink = Gaisi Takeuti|title=Proof theory|edition= Second |series= Studies in Logic and the Foundations of Mathematics|volume= 81|publisher= North-Holland Publishing Co.|place= Amsterdam|year=1987| isbn= 978-0-444-87943-
*{{citation |last=Smorynski |first=C. |year=1982 |title=The varieties of arboreal experience |journal=Math. Intelligencer |volume=4 |issue=4 |pages=182–189 |doi=10.1007/BF03023553}} contains an informal description of the Veblen hierarchy.
*{{citation|title= Continuous Increasing Functions of Finite and Transfinite Ordinals |first=Oswald |last=Veblen |journal= Transactions of the American Mathematical Society|volume= 9|issue= 3|year= 1908|pages=280–292 |doi= 10.2307/1988605|jstor=1988605|doi-access= free}}
*{{citation |jstor=2272243 |pages=439–459 |last1=Miller |first1=Larry W. |title=Normal Functions and Constructive Ordinal Notations |volume=41 |issue=2 |journal=The Journal of Symbolic Logic |year=1976 |doi=10.2307/2272243}}
*{{citation |last=Massmann |first=Jayde Sylvie |title=Extending the Veblen Function |date=October 20, 2023 |url=https://arxiv.org/abs/2310.12832 |arxiv=2310.12832 |last2=Kwon |first2=Adrian Wang}}
===Citations===
{{Reflist}}
[[Category:Ordinal numbers]]
|