Cross-correlation matrix: Difference between revisions

Content deleted Content added
Reference.
 
(9 intermediate revisions by 9 users not shown)
Line 1:
{{other uses|Correlation andfunction covariance(disambiguation)}}
{{Multiple issues|
{{Other uses2|Correlation function}}
{{disputed|date=December 2018}}
{{UnreferencedMore citations needed|date=December 2009}}
}}
{{Correlation and covariance}}
 
The '''cross-correlation matrix''' of two [[random vector|random vectors]]s is a matrix containing as elements the cross-correlations of all pairs of elements of the random vectors. The cross-correlation matrixismatrix is used in various digital signal processing algorithms.
 
==Definition==
Line 12 ⟶ 14:
|indent =
|title=
|equation = <math>\operatorname{R}_{\mathbf{X}\mathbf{Y}} \stackrel{\mathrm{def}}{=}triangleq\ \operatorname{E}[\mathbf{X} \mathbf{Y}^{\rm T}]</math>
|cellpadding= 6
|border
Line 35 ⟶ 37:
<math>\operatorname{R}_{\mathbf{X}\mathbf{Y}}</math> is a <math>3 \times 2</math> matrix whose <math>(i,j)</math>-th entry is <math>\operatorname{E}[X_i Y_j]</math>.
 
==cross-correlation matrix of complexComplex random vectors==
If <math>\mathbf{Z} = (Z_1,\ldots,Z_m)^{\rm T}</math> and <math>\mathbf{W} = (W_1,\ldots,W_n)^{\rm T}</math> are [[complex random vector|complex random vectors]]s, each containing random variables whose expected value and variance exist, the cross-correlation matrix of <math>\mathbf{Z}</math> and <math>\mathbf{W}</math> is defined by
 
:<math>\operatorname{R}_{\mathbf{Z}\mathbf{W}} \stackrel{\mathrm{def}}{=}triangleq\ \operatorname{E}[\mathbf{Z} \mathbf{W}^{\rm H}]</math>
 
where <math>{}^{\rm H}</math> denotes [[Hermitian transpose|Hermitian transposition]].
Line 46 ⟶ 48:
:<math>\operatorname{E}[\mathbf{X} \mathbf{Y}^{\rm T}] = \operatorname{E}[\mathbf{X}]\operatorname{E}[\mathbf{Y}]^{\rm T}.</math>
 
They are uncorrelated if and only if their cross-covariance matrix <math>\operatorname{K}_{\mathbf{X}\mathbf{Y}}</math> matrix is zero.
 
In the case of two [[complex random vector|complex random vectors]]s <math>\mathbf{Z}</math> and <math>\mathbf{W}</math> they are called uncorrelated if
:<math>\operatorname{E}[\mathbf{Z} \mathbf{W}^{\rm H}] = \operatorname{E}[\mathbf{Z}]\operatorname{E}[\mathbf{W}]^{\rm H}</math>
and
Line 54 ⟶ 56:
 
==Properties==
* The ''cross-covariance matrix'' is related===Relation to the cross-correlationcovariance matrix as follows:===
The cross-correlation is related to the ''cross-covariance matrix'' as follows:
:<math>\operatorname{K}_{\mathbf{X}\mathbf{Y}} = \operatorname{E}[(\mathbf{X} - \operatorname{E}[\mathbf{X}])(\mathbf{Y} - \operatorname{E}[\mathbf{Y}])^{\rm T}] = \operatorname{R}_{\mathbf{X}\mathbf{Y}} - \operatorname{E}[\mathbf{X}] \operatorname{E}[\mathbf{Y}]^{\rm T}</math>
: Respectively for complex random vectors:
:<math>\operatorname{K}_{\mathbf{Z}\mathbf{W}} = \operatorname{E}[(\mathbf{Z} - \operatorname{E}[\mathbf{Z}])(\mathbf{W} - \operatorname{E}[\mathbf{W}])^{\rm H}] = \operatorname{R}_{\mathbf{Z}\mathbf{W}} - \operatorname{E}[\mathbf{Z}] \operatorname{E}[\mathbf{W}]^{\rm H}</math>
 
==References==
{{reflist}}
* Hayes, Monson H., ''Statistical Digital Signal Processing and Modeling'', John Wiley & Sons, Inc., 1996. {{ISBN|0-471-59431-8}}.
* Solomon W. Golomb, and Guang Gong. [http://www.cambridge.org/us/academic/subjects/computer-science/cryptography-cryptology-and-coding/signal-design-good-correlation-wireless-communication-cryptography-and-radar Signal design for good correlation: for wireless communication, cryptography, and radar]. Cambridge University Press, 2005.
* M. Soltanalian. [http://theses.eurasip.org/theses/573/signal-design-for-active-sensing-and/download/ Signal Design for Active Sensing and Communications]. Uppsala Dissertations from the Faculty of Science and Technology (printed by Elanders Sverige AB), 2014.
 
==See also==
Line 74 ⟶ 71:
*[[Correlation function (quantum field theory)]]
*[[Mutual information]]
*[[Rate distortion theory#Rate–distortion_functionsRate–distortion functions|Rate distortion theory]]
*[[Radial distribution function]]
 
==References==
{{reflist}}
 
==Further reading==
* Hayes, Monson H., ''Statistical Digital Signal Processing and Modeling'', John Wiley & Sons, Inc., 1996. {{ISBN|0-471-59431-8}}.
* Solomon W. Golomb, and [[Guang Gong]]. [http://www.cambridge.org/us/academic/subjects/computer-science/cryptography-cryptology-and-coding/signal-design-good-correlation-wireless-communication-cryptography-and-radar Signal design for good correlation: for wireless communication, cryptography, and radar]. Cambridge University Press, 2005.
* M. Soltanalian. [http://theses.eurasip.org/theses/573/signal-design-for-active-sensing-and/download/ Signal Design for Active Sensing and Communications]. Uppsala Dissertations from the Faculty of Science and Technology (printed by Elanders Sverige AB), 2014.
 
{{DEFAULTSORT:Correlation Function}}
[[Category:Covariance and correlation]]
[[Category:Time series]]
[[Category:Spatial data analysis]]
[[Category:Matrices (mathematics)]]
[[Category:Signal processing]]