Content deleted Content added
Its mistake in equation and i corrected it. Tags: Visual edit Mobile edit Mobile web edit |
Reverted 1 edit by 2600:4040:F053:4400:6A9F:B6EB:CE1C:CE99 (talk): "scalar vector" is an oxymoron |
||
(57 intermediate revisions by 24 users not shown) | |||
Line 1:
{{Short description|Vector spaces associated to a matrix}}
[[File:Matrix Rows.svg|thumb|right|The row vectors of a [[matrix (mathematics)|matrix]]. The row space of this matrix is the vector space
[[Image:Matrix Columns.svg|thumb|right|The column vectors of a [[matrix (mathematics)|matrix]]. The column space of this matrix is the vector space
In [[linear algebra]], the '''column space''' (also called the '''range''' or [[Image (mathematics)|'''image''']]) of a [[matrix (mathematics)|matrix]] ''A'' is the [[Linear span|span]] (set of all possible [[linear combination]]s) of its [[column vector]]s. The column space of a matrix is the [[image (mathematics)|image]] or [[range
Let <math>
The '''row space''' is defined similarly.
The row space and the column space of a matrix {{mvar|A}} are sometimes denoted as {{math|'''''C'''''(''A''<sup>T</sup>)}} and {{math|'''''C'''''(''A'')}} respectively.<ref>{{Cite book|last=Strang|first=Gilbert|title=Introduction to linear algebra|publisher=Wellesley-Cambridge Press|year=2016|isbn=978-0-9802327-7-6|edition=Fifth|___location=Wellesley, MA|pages=128,168|oclc=956503593}}</ref>
This article considers matrices of [[real number]]s. The row and column spaces are subspaces of the [[real coordinate space|real spaces]] '''R'''<sup>''n''</sup> and '''R'''<sup>''m''</sup> respectively.<ref>{{harvtxt|Anton|1987|p=179}}</ref>▼
▲This article considers matrices of [[real number]]s. The row and column spaces are subspaces of the [[real coordinate space|real spaces]]
==Overview==▼
Let ''A'' be an ''m''-by-''n'' matrix. Then▼
# rank(''A'') = dim(rowsp(''A'')) = dim(colsp(''A'')),<ref>{{harvtxt|Anton|1987|p=183}}</ref>▼
# rank(''A'') = number of [[Pivot element|pivots]] in any echelon form of ''A'',▼
# rank(''A'') = the maximum number of linearly independent rows or columns of ''A''.<ref>{{harvtxt|Beauregard|Fraleigh|1973|p=254}}</ref>▼
▲==Overview==
If one considers the matrix as a [[linear transformation]] from '''R'''<sup>''n''</sup> to '''R'''<sup>''m''</sup>, then the column space of the matrix equals the [[image (mathematics)|image]] of this linear transformation.▼
▲
▲
▲
▲If
The column space of a matrix ''A'' is the set of all linear combinations of the columns in ''A''. If ''A'' = ['''a'''<sub>1</sub>, ...., '''a'''<sub>''n''</sub>], then colsp(''A'') = span {'''a'''<sub>1</sub>, ...., '''a'''<sub>''n''</sub>}.▼
▲The column space of a matrix
===Example===
Given a matrix
:<math>
J =
Line 37 ⟶ 38:
</math>
the rows are
<math>\mathbf{r}_1 = \begin{bmatrix} 2 & 4 & 1 & 3 & 2 \end{bmatrix}</math>,
<math>\mathbf{r}_2 = \begin{bmatrix} -1 & -2 & 1 & 0 & 5 \end{bmatrix}</math>,
<math>\mathbf{r}_3 = \begin{bmatrix} 1 & 6 & 2 & 2 & 2 \end{bmatrix}</math>,
<math>\mathbf{r}_4 = \begin{bmatrix} 3 & 6 & 2 & 5 & 1 \end{bmatrix}</math>.
Consequently, the row space of
Since these four row vectors are [[Linear independence|linearly independent]], the row space is 4-dimensional. Moreover, in this case it can be seen that they are all [[orthogonality|orthogonal]] to the vector {{math|1='''n''' =
==Column space==
Line 48 ⟶ 49:
===Definition===
Let
:<math>c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_n \mathbf{v}_n,</math>
where {{math|''c''<sub>1</sub>,
Any linear combination of the column vectors of a matrix
:<math>\begin{array} {rcl}
A \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}
& = & \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}
= \begin{bmatrix} c_1 a_{11} +
& = & c_1 \mathbf{v}_1 + \cdots + c_n \mathbf{v}_n
\end{array}</math>
Therefore, the column space of
===Basis===
The columns of
For example, consider the matrix
:<math>A = \begin{bmatrix} 1 & 3 & 1 & 4 \\ 2 & 7 & 3 & 9 \\ 1 & 5 & 3 & 1 \\ 1 & 2 & 0 & 8 \end{bmatrix}
The columns of this matrix span the column space, but they may not be [[linearly independent]], in which case some subset of them will form a basis. To find this basis, we reduce
:<math>\begin{bmatrix} 1 & 3 & 1 & 4 \\ 2 & 7 & 3 & 9 \\ 1 & 5 & 3 & 1 \\ 1 & 2 & 0 & 8 \end{bmatrix}
\sim \begin{bmatrix} 1 & 3 & 1 & 4 \\ 0 & 1 & 1 & 1 \\ 0 & 2 & 2 & -3 \\ 0 & -1 & -1 & 4 \end{bmatrix}
\sim \begin{bmatrix} 1 & 0 & -2 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & -5 \\ 0 & 0 & 0 & 5 \end{bmatrix}
\sim \begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}
At this point, it is clear that the first, second, and fourth columns are linearly independent, while the third column is a linear combination of the first two. (Specifically, {{math|1='''v'''<sub>3</sub>
:<math>\begin{bmatrix} 1 \\ 2 \\ 1 \\ 1\end{bmatrix},\;\;
\begin{bmatrix} 3 \\ 7 \\ 5 \\ 2\end{bmatrix},\;\;
\begin{bmatrix} 4 \\ 9 \\ 1 \\ 8\end{bmatrix}
Note that the independent columns of the reduced row echelon form are precisely the columns with [[Pivot element|pivots]]. This makes it possible to determine which columns are linearly independent by reducing only to [[row echelon form|echelon form]].
The above algorithm can be used in general to find the dependence relations between any set of vectors, and to pick out a basis from any spanning set. Also finding a basis for the column space of
To find the basis in a practical setting (e.g., for large matrices), the [[singular-value decomposition]] is typically used.
Line 90 ⟶ 91:
===Dimension===
{{main|Rank (linear algebra)}}
The [[dimension (linear algebra)|dimension]] of the column space is called the '''[[rank (linear algebra)|rank]]''' of the matrix. The rank is equal to the number of pivots in the [[reduced row echelon form]], and is the maximum number of linearly independent columns that can be chosen from the matrix. For example, the 4
Because the column space is the [[image (mathematics)|image]] of the corresponding [[matrix transformation]], the rank of a matrix is the same as the dimension of the image. For example, the transformation
The '''nullity''' of a matrix is the dimension of the [[kernel (matrix)|null space]], and is equal to the number of columns in the reduced row echelon form that do not have pivots.<ref>Columns without pivots represent free variables in the associated homogeneous [[system of linear equations]].</ref> The rank and nullity of a matrix
:<math>\
This is known as the [[rank–nullity theorem]].
===Relation to the left null space===
The [[left null space]] of
:<math>A^\mathsf{T}\mathbf{x} = \begin{bmatrix} \mathbf{v}_1 \cdot \mathbf{x} \\ \mathbf{v}_2 \cdot \mathbf{x} \\ \vdots \\ \mathbf{v}_n \cdot \mathbf{x} \end{bmatrix},</math>
because [[row vector]]s of {{math|''A''<sup>T</sup>}} are transposes of column vectors {{math|'''v'''<sub>''k''</sub>}} of
It follows that the left null space (the null space of {{math|''A''<sup>T</sup>}}) is the [[orthogonal complement]] to the column space of {{mvar|A}}.
For a matrix
===For matrices over a ring===
Similarly the column space (sometimes disambiguated as ''right'' column space) can be defined for matrices over a [[ring (mathematics)|ring]]
:<math>\sum\limits_{k=1}^n \mathbf{v}_k c_k</math>
for any {{math|''c''<sub>1</sub>,
==Row space==
===Definition===
Let
:<math>c_1 \mathbf{r}_1 + c_2 \mathbf{r}_2 + \cdots + c_m \mathbf{r}_m,</math>
where {{math|''c''<sub>1</sub>,
For example, if
:<math>A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \end{bmatrix},</math>
then the row vectors are {{math|1='''r'''<sub>1</sub>
:<math>c_1
The set of all such vectors is the row space of
For a matrix that represents a homogeneous [[system of linear equations]], the row space consists of all linear equations that follow from those in the system.
The column space of
===Basis===
Line 134 ⟶ 135:
For example, consider the matrix
:<math>A = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 7 & 4 \\ 1 & 5 & 2\end{bmatrix}.</math>
The rows of this matrix span the row space, but they may not be [[linearly independent]], in which case the rows will not be a basis. To find a basis, we reduce
{{math|'''r'''<sub>1</sub>
:<math>
\begin{align}
\begin{bmatrix} 1 & 3 & 2 \\ 2 & 7 & 4 \\ 1 & 5 & 2\end{bmatrix} \underbrace{\sim}_{r_2-2r_1}▼
\begin{bmatrix} 1 & 3 & 2 \\
&\xrightarrow{\mathbf{r}_2-2\mathbf{r}_1 \to \mathbf{r}_2}
\begin{bmatrix} 1 & 3 & 2 \\ 0 & 1 & 0 \\ 0 & 2 & 0\end{bmatrix} \underbrace{\sim}_{r_3-2r_2}▼
\begin{bmatrix} 1 & 3 & 2 \\ 0 & 1 & 0 \\
\xrightarrow{\mathbf{r}_3-\,\,\mathbf{r}_1 \to \mathbf{r}_3}
▲\begin{bmatrix} 1 & 3 & 2 \\
&\xrightarrow{\mathbf{r}_3-2\mathbf{r}_2 \to \mathbf{r}_3}
\xrightarrow{\mathbf{r}_1-3\mathbf{r}_2 \to \mathbf{r}_1}
\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{bmatrix}.
\end{align}
</math>
Once the matrix is in echelon form, the nonzero rows are a basis for the row space. In this case, the basis is {
This algorithm can be used in general to find a basis for the span of a set of vectors. If the matrix is further simplified to [[reduced row echelon form]], then the resulting basis is uniquely determined by the row space.
It is sometimes convenient to find a basis for the row space from among the rows of the original matrix instead (for example, this result is useful in giving an elementary proof that the [[Rank (linear algebra)#Alternative definitions|determinantal rank]] of a matrix is equal to its rank). Since row operations can affect linear dependence relations of the row vectors, such a basis is instead found indirectly using the fact that the column space of {{math|''A''<sup>T</sup>}} is equal to the row space of
:<math>
A^{\mathrm{T}} = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 7 & 5 \\ 2 & 4 & 2\end{bmatrix} \sim
\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0\end{bmatrix}.
</math>
The pivots indicate that the first two columns of {{math|''A''<sup>T</sup>}} form a basis of the column space of
===Dimension===
{{main|Rank (linear algebra)}}
The [[dimension (linear algebra)|dimension]] of the row space is called the '''[[rank (linear algebra)|rank]]''' of the matrix. This is the same as the maximum number of linearly independent rows that can be chosen from the matrix, or equivalently the number of pivots. For example, the 3&
The rank of a matrix is also equal to the dimension of the [[column space]]. The dimension of the [[null space]] is called the '''nullity''' of the matrix, and is related to the rank by the following equation:
:<math>\operatorname{rank}(A) + \operatorname{nullity}(A) = n,</math>
where
===Relation to the null space===
The [[null space]] of matrix
:<math>A\mathbf{x} = \begin{bmatrix} \mathbf{r}_1 \cdot \mathbf{x} \\ \mathbf{r}_2 \cdot \mathbf{x} \\ \vdots \\ \mathbf{r}_m \cdot \mathbf{x} \end{bmatrix},</math>
where {{math|'''r'''<sub>1</sub>,
It follows that the null space of
The row space and null space are two of the [[four fundamental subspaces]] associated with a matrix
===Relation to coimage===
If
If
When
==See also==
* [[Euclidean subspace]]
==References & Notes==
{{reflist}}
{{see also|Linear algebra#Further reading}}
==
* {{Citation
| last = Anton
Line 221 ⟶ 227:
| isbn = 978-1-42-009538-8
}}
* {{
| last1 = Beauregard
| first1 = Raymond A.
Line 230 ⟶ 236:
| publisher = [[Houghton Mifflin Company]]
| year = 1973
| isbn = 0-395-14017-X
| url-access = registration
| url = https://archive.org/details/firstcourseinlin0000beau
}}
* {{Citation
| last = Lay
Line 256 ⟶ 265:
|isbn = 978-0-89871-454-8
|url = http://www.matrixanalysis.com/DownloadChapters.html
|
|
|
}}
* {{Citation
Line 295 ⟶ 303:
[[Category:Abstract algebra]]
[[Category:Linear algebra]]
[[Category:Matrices (mathematics)]]
|